Abstract. Precipitation events are expected to become substantially more intense under global warming, but few global comparisons of observations and climate model simulations are available to constrain predictions of future changes in precipitation extremes. We present a systematic global-scale comparison of changes in historical annualmaximum daily precipitation between station observations (compiled in HadEX2) and the suite of global climate models contributing to the fifth phase of the Coupled Model Intercomparison Project (CMIP5). We use both parametric and non-parametric methods to quantify the strength of trends in extreme precipitation in observations and models, taking care to sample them spatially and temporally in comparable ways. We find that both observations and models show generally increasing trends in extreme precipitation since 1901, with the largest changes in the deep tropics. Annual-maximum daily precipitation (Rx1day) has increased faster in the observations than in most of the CMIP5 models. On a global scale, the observational annual-maximum daily precipitation has increased by an average of 5.73 mm over the last 110 years, or 8.5 % in relative terms. This corresponds to an increase of 10 % K −1 in global warming since 1901, which is larger than the average of climate models, with 8.3 % K −1 . The average rate of increase in extreme precipitation per K of warming in both models and observations is higher than the rate of increase in atmospheric water vapor content per K of warming expected from the Clausius-Clapeyron equation. We expect our findings to help inform assessments of precipitationrelated hazards such as flooding, droughts and storms.
Abstract. Global warming is expected to intensify the Earth's hydrological cycle and increase flood and drought risks. Changes over the 21st century under two warming scenarios in different percentiles of the probability distribution of streamflow, and particularly of high and low streamflow extremes (95th and 5th percentiles), are analyzed using an ensemble of bias-corrected global climate model (GCM) fields fed into different global hydrological models (GHMs) provided by the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) to understand the changes in streamflow distribution and simultaneous vulnerability to different types of hydrological risk in different regions. In the multimodel mean under the Representative Concentration Pathway 8.5 (RCP8.5) scenario, 37 % of global land areas experience an increase in magnitude of extremely high streamflow (with an average increase of 24.5 %), potentially increasing the chance of flooding in those regions. On the other hand, 43 % of global land areas show a decrease in the magnitude of extremely low streamflow (average decrease of 51.5 %), potentially increasing the chance of drought in those regions. About 10 % of the global land area is projected to face simultaneously increasing high extreme streamflow and decreasing low extreme streamflow, reflecting the potentially worsening hazard of both flood and drought; further, these regions tend to be highly populated parts of the globe, currently holding around 30 % of the world's population (over 2.1 billion people). In a world more than 4 • warmer by the end of the 21st century compared to the pre-industrial era (RCP8.5 scenario), changes in magnitude of streamflow extremes are projected to be about twice as large as in a 2 • warmer world (RCP2.6 scenario). Results also show that inter-GHM uncertainty in streamflow changes, due to representation of terrestrial hydrology, is greater than the inter-GCM uncertainty due to simulation of climate change. Under both forcing scenarios, there is high model agreement for increases in streamflow of the regions near and above the Arctic Circle, and consequent increases in the freshwater inflow to the Arctic Ocean, while subtropical arid areas experience a reduction in streamflow.
To understand changes in global mean and extreme streamflow volumes over recent decades, we statistically analyzed runoff and streamflow simulated by the WBM-plus hydrological model using either observational-based meteorological inputs from WATCH Forcing Data (WFD), or bias-corrected inputs from five global climate models (GCMs) provided by the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP). Results show that the bias-corrected GCM inputs yield very good agreement with the observation-based inputs in average magnitude of runoff and streamflow. On global average, the observation-based simulated mean runoff and streamflow both decreased about 1.3% from 1971 to 2001. However, GCM-based simulations yield increasing trends over that period, with an inter-model global average of 1% for mean runoff and 0.9% for mean streamflow. In the GCM-based simulations, relative changes in extreme runoff and extreme streamflow (annual maximum daily values and annual-maximum seven-day streamflow) are slightly greater than those of mean runoff and streamflow, in terms of global and continental averages. Observation-based simulations show increasing trend in mean runoff and streamflow for about one-half of the land areas and decreasing trend for the other half. However, mean and extreme runoff and streamflow based on the GCMs show increasing trend for approximately two-thirds of the global land area and decreasing trend for the other one-third. Further work is needed to understand why GCM simulations appear to indicate trends in streamflow that are more positive than those suggested by climate observations, even where, as in ISI-MIP, bias correction has been applied so that their streamflow climatology is realistic.
Water supply reliability is expected to be affected by both precipitation amount and distribution changes under recent and future climate change. We compare historical (1951‐2010) changes in annual‐mean and annual‐maximum daily precipitation in the global set of station observations from Global Historical Climatology Network and climate models from the Inter‐Sectoral Impact Model Intercomparison Project (ISI‐MIP), and develop the study to 2011‐2099 for model projections under high radiative forcing scenario (RCP8.5). We develop a simple rainwater harvesting system (RWHS) model and drive it with observational and modeled precipitation. We study the changes in mean and maximum precipitation along with changes in the reliability of the model RWHS as tools to assess the impact of changes in precipitation amount and distribution on reliability of precipitation‐fed water supplies. Results show faster increase in observed maximum precipitation (10.14% per K global warming) than mean precipitation (7.64% per K), and increased reliability of the model RWHS driven by observed precipitation by an average of 0.2% per decade. The ISI‐MIP models show even faster increase in maximum precipitation compared to mean precipitation. However, they imply decreases in mean reliability, for an average 0.15% per decade. Compared to observations, climate models underestimate the increasing trends in mean and maximum precipitation and show the opposite direction of change in reliability of a model water supply system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.