Abstract-Automated affective computing in the wild setting is a challenging problem in computer vision. Existing annotated databases of facial expressions in the wild are small and mostly cover discrete emotions (aka the categorical model). There are very limited annotated facial databases for affective computing in the continuous dimensional model (e.g., valence and arousal). To meet this need, we collected, annotated, and prepared for public distribution a new database of facial emotions in the wild (called AffectNet). AffectNet contains more than 1,000,000 facial images from the Internet by querying three major search engines using 1250 emotion related keywords in six different languages. About half of the retrieved images were manually annotated for the presence of seven discrete facial expressions and the intensity of valence and arousal. AffectNet is by far the largest database of facial expression, valence, and arousal in the wild enabling research in automated facial expression recognition in two different emotion models. Two baseline deep neural networks are used to classify images in the categorical model and predict the intensity of valence and arousal. Various evaluation metrics show that our deep neural network baselines can perform better than conventional machine learning methods and off-the-shelf facial expression recognition systems.Index Terms-Affective computing in the wild, facial expressions, continuous dimensional space, valence, arousal.
Deep Neural Networks (DNNs) have shown to outperform traditional methods in various visual recognition tasks including Facial Expression Recognition (FER). In spite of efforts made to improve the accuracy of FER systems using DNN, existing methods still are not generalizable enough in practical applications. This paper proposes a 3D Convolutional Neural Network method for FER in videos. This new network architecture consists of 3D Inception-ResNet layers followed by an LSTM unit that together extracts the spatial relations within facial images as well as the temporal relations between different frames in the video. Facial landmark points are also used as inputs to our network which emphasize on the importance of facial components rather than the facial regions that may not contribute significantly to generating facial expressions. Our proposed method is evaluated using four publicly available databases in subject-independent and cross-database tasks and outperforms state-of-the-art methods.
Automated Facial Expression Recognition (FER) has been a challenging task for decades. Many of the existing works use hand-crafted features such as LBP, HOG, LPQ, and Histogram of Optical Flow (HOF) combined with classifiers such as Support Vector Machines for expression recognition. These methods often require rigorous hyperparameter tuning to achieve good results. Recently Deep Neural Networks (DNN) have shown to outperform traditional methods in visual object recognition. In this paper, we propose a two-part network consisting of a DNN-based architecture followed by a Conditional Random Field (CRF) module for facial expression recognition in videos. The first part captures the spatial relation within facial images using convolutional layers followed by three Inception-ResNet modules and two fully-connected layers. To capture the temporal relation between the image frames, we use linear chain CRF in the second part of our network. We evaluate our proposed network on three publicly available databases, viz. CK+, MMI, and FERA. Experiments are performed in subjectindependent and cross-database manners. Our experimental results show that cascading the deep network architecture with the CRF module considerably increases the recognition of facial expressions in videos and in particular it outperforms the stateof-the-art methods in the cross-database experiments and yields comparable results in the subject-independent experiments.
Automated affective computing in the wild is a challenging task in the field of computer vision. This paper presents three neural network-based methods proposed for the task of facial affect estimation submitted to the First Affect-in-the-Wild challenge. These methods are based on Inception-ResNet modules redesigned specifically for the task of facial affect estimation. These methods are: Shallow Inception-ResNet, Deep Inception-ResNet, and Inception-ResNet with LSTMs. These networks extract facial features in different scales and simultaneously estimate both the valence and arousal in each frame. Root Mean Square Error (RMSE) rates of 0.4 and 0.3 are achieved for the valence and arousal respectively with corresponding Concordance Correlation Coefficient (CCC) rates of 0.04 and 0.29 using Deep Inception-ResNet method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.