Nowadays, industrial dryers are used instead of traditional methods for drying. When designing dryers suitable for controlling the process of drying and reaching a high-quality product, it is necessary to predict the gradual moisture loss during drying. Few studies have been conducted to compare thin-layer models and artificial neural network models on the kinetics of pistachio drying in a cabinet dryer. For this purpose, ten mathematical-experimental models with a neural network model based on the kinetic data of pistachio drying were studied. The data obtained was from a cabinet dryer evaluated at four temperatures of inlet air and different air velocities. The pistachio seeds were placed in a thin layer on an aluminum sheet on a drying tray and weighed by a scale attached to the computer at different times. In the neural network, data was divided into three parts: Educational (60%), validation (20%) and testing (20%). Finally, the best mathematical-experimental model using a genetic algorithm and the best neural network structure for predicting instantaneous moisture were selected based on the least squared error and the highest correlation coefficient.
Nowadays industrial dryers are used instead of traditional methods for drying. In designing dryers suitable for controlling the process of drying and reaching a high quality product, it is necessary to predict the instantaneous moisture loss during drying. For this purpose, ten mathematical-experimental models with a neural network model based on the kinetic data of pistachio drying are studied. The data obtained from the cabinet dryer will be evaluated at four temperatures of inlet air and different air velocities. The pistachio seeds will be placed in a thin layer on an aluminum sheet on a drying tray and weighed by a scale attached to the computer at different times. In the neural network, data are divided into three parts: educational (60%), validation (20%) and test (20%). Finally, the best mathematical-experimental model using genetic algorithm and the best neural network structure for predicting instantaneous moisture are selected based on the least squared error and the highest correlation coefficient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.