Due to apparent flexibility of Intuitionistic Fuzzy Set (IFS) concepts in dealing with the imprecision or uncertainty, these are proving to be quite useful in many application areas for a more human consistent reasoning under imperfectly defined facts and imprecise knowledge. In this paper, we apply notions of entropy and intuitionistic fuzzy sets to present a new fuzzy decision-making approach called intuitionistic fuzzy entropy measure for selection and ranking the suppliers with respect to the attributes. An entropy-based model is formulated and applied to a real case study aiming to examine the rankings of suppliers. Furthermore, the weights for each alternative, with respect to the criteria, are calculated using intuitionistic fuzzy entropy measure. The supplier with the highest weight is selected as the best alternative. This proposed model helps the decision-makers in better understanding of the weight of each criterion without relying on the mere expertise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.