The objective of the present work is to analyze experimentally and numerically the laminar forced convection flow in a horizontal pipe partially filled with a porous medium under constant heat flux and to study the influence of the eccentricity of the porous medium on the results. In a numerical analysis, the governing equations are solved in three dimensions. To simplify the grid generation and the satisfaction of the boundary conditions, conformal mapping is applied to convert the cross-section of the tube in the fluid domain (space between two eccentric circles) into a rectangle, and the equations are solved in a computational domain in this domain. The Darcy–Brinkman–Forchheimer model is applied to simulate the hydrodynamic behavior of the flow in the porous region. Thermal equilibrium between solid and fluid is assumed for the energy equation. A FORTRAN program was developed to solve the equations using the finite volume method and the SIMPLE algorithm. Velocity profile, pressure drop and average Nusselt number are studied in a wide range of Darcy numbers, thickness of porous mediums and eccentricities. The results show that the eccentricity of the porous material reduces the heat transfer coefficient and the pressure drop simultaneously; of course, the reduction in the heat transfer coefficient is less noticeable when the thickness of the porous medium is smaller. For example, at RP = 0.5, when the eccentricity of the porous medium increases up to E = 0.4, the average Nusselt number decreases by 66%, and this reduction for a smaller porous thickness decreases to 11%. The maximum pressure drop reduction for Da = 10−5 and E = 0.4 is 25%.
In hot and dry climates, evaporative cooling of the air by water spray can be applied in several requirements, such as evaporative condensers which the airflow is precooled by the water spray before it reaches the condenser. The interaction between water droplets and the air is a complicated two-phase flow that is affected by the several parameters. Here, an Eulerian-Lagrangian 3D model was developed to investigate the influence of important parameters on spray cooling performance in a rectangular duct. The evaluated parameters include the number of nozzles, inlet air flow rate, and spray water flow rate. The results represented that growth in the number of nozzles causes a reduction in the spray cooling efficiency. Thi s is due to decrease of droplets retention time within the duct by increasing the number of nozzles at a constant total spray flow rate in the cases. The maximum and minimum spray cooling efficiency belong to the cases with one nozzle at water flow rate of 20 l/h and four nozzle at water flow rate of 5 l/h, respectively. The difference between spray cooling efficiency at 3 and 4 number of nozzles is less than 1.8%. Moreover, increasing the air flow rate from 0.5 l/h to 2 l/h (by 300%) makes a decrease in the spray cooling efficiency up to 58.6%.
There are two primary laws including the first and second laws of thermodynamics that should be used to assess a process. Generally, only the first law of thermodynamics is investigated in numerical solutions, so it is possible to exist some numerical results that do not satisfy the second law of thermodynamics because of numerical errors. To achieve reliable numerical outcomes, it is better to apply two indexes of HEAT BALANCE ERROR and VIRTUAL ENTROPY GENERATION, which come from the second law of thermodynamics. In other words, an approach to develop computational fluid dynamics investigations is to take second law of thermodynamics into consideration. In this study, two different models including counterflow double-pipe heat exchanger and single-pipe with constant wall temperature are simulated in various cases with different efficiencies and temperature ratios. It is found that 46 cases of total 523 double-pipe models and 24 cases of total 402 simulations of single-pipe models had unacceptable results regarding to two mentioned criteria. The results revealed that it is less likely to gain unreliable results in smaller efficiency and lower inlet temperature for double-pipe heat exchanger and single-pipe respectively. K E Y W O R D S entropy generation, heat balance error, heat exchanger, second law of thermodynamics, virtual entropy generation Heat Transfer-Asian Res. 2019;48:1933-1945.wileyonlinelibrary.com/journal/htj
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.