Epoxy asphalt concrete, mortar asphalt concrete and Gussasphalt concrete are commonly used types of deck pavement materials in bridge deck pavement engineering. However, achieving the high-temperature stability and anti-fatigue performance of the deck pavement materials is still challenging. In order to reduce the rutting and cracking risks of the asphalt mixture, this paper proposed pre-coated aggregates grouting asphalt concrete (PGAC) for bridge deck pavement. Laboratory tests were conducted to determine the optimum grouting materials and to evaluate the mechanical performances of the PGAC material. Test results showed that the mechanical properties for PGAC with grouting material of high-viscosity-modified asphalt binder blending with mineral filler were superior to that of GMA-10 used for the Hong Kong-Zhuhai-Macau Bridge deck pavement. Microstructural analysis showed that the PGAC had a more stable skeleton structure compared to other typical aggregate mixtures. This study highlights the performances of the proposed PGAC and sheds light on the deck pavement material improvement of both high-temperature stability and anti-fatigue performance that could be achieved.
The interface between an asphalt binder and a calcium silicate hydrate (C-S-H) gel is a weak point of semi-flexible pavement material. In this study, the adhesion performance of asphalt-C-S-H gel interface in semi-flexible pavements at a molecular scale has been investigated. Molecular dynamics (MD) simulations were applied to establish three asphalt binders: 70# asphalt binder (the penetration is 70 mm), PG76-22 modified asphalt binder (a kind of asphalt binder that can adapt to the highest temperature of 76 °C and the lowest temperature of −22 °C), and S-HV asphalt binder (super high viscosity). The effects of different temperatures and SBS modifier contents on interfacial adhesion were explored. The obtained results showed that temperature variations had little effect on the adhesion work of the asphalt-C-S-H gel interface. It was also found that by increasing the content of SBS modifier, the adhesion work of the asphalt-C-S-H gel interface was increased. The molecular weight of each component was found to be an important factor affecting its molecular diffusion rate. The addition of SBS modifier could regulate the adsorption of aromatics by C-S-H gel in the four components of asphalt binder and improve the adsorption of resins by C-S-H gel.
In this work, the influences of moisture intruded into the asphalt-aggregate interface have been investigated at the atomistic scale. The molecular interactions of asphalt with limestone and granite were studied using molecular dynamics (MD) simulations and the mineral surface components of limestone and granite were detected using the hyperspectral image technique. Relative concentration and radial distribution function (RDF) were employed for the characterization of asphalt component aggregations on aggregates surface. Adhesion work and debonding energy were also evaluated to investigate interface energy variations in asphalt-aggregate systems. MD results showed that the presence of interfacial moisture modified asphalt nanostructure and affected the aggregation state and distribution characteristics of asphalt components near aggregate surface. The study also demonstrated that the external moisture that intruded into the interface of the asphalt-aggregate system can decrease the concentration distribution of the asphalt components with powerful polarity on aggregate surface, reduce the adhesion works of the asphalt-aggregate interface, and decline the water damage resistance of asphalt mixture.
The purpose of this study was to investigate the effect of aggregate surface adsorbed water on the adhesive capacity and nanostructure of asphalt-aggregate interfaces at the atomic scale. Molecular dynamics (MD) simulation was performed to measure and analyze the molecular interactions of asphalt binder with calcite and silica. Radial distribution function (RDF) and relative concentration (RC) were applied to characterizing the concentrations and distributions of asphalt components on aggregate surfaces. In addition, debonding energy and adhesion energy were employed to calculate the variations of interface adhesion energy of the asphalt-aggregate system under different conditions. The obtained results illustrated that the water molecules adsorbed onto the surface of weakly alkaline aggregates inhibited the concentration and distribution of asphalt components near the aggregate surface, decreased adhesion energy between asphalt and aggregates, and changed asphalt nanostructure. Especially, when external free water intruded into the interface of the asphalt-calcite system, the adsorbed water interacted with free water and seriously declined the water damage resistance of the asphalt mixture with limestone as an aggregate and decreased the durability of the mixtures. The water adsorbed onto the surface of the acid aggregate negatively affected the asphalt-silica interface system and slightly reduced the water damage resistance of the asphalt mixture.
Warm-mixed reclaimed asphalt pavement (RAP) technology has been widely studied worldwide as a recycled environmental method to reuse waste materials. However, the aggregate skeleton structure of the warm-mixed reclaimed asphalt mixture is not stable because of the existence of the recycled materials. Warm-mixed recycled semi-flexible pavement material can solve the defects of the above materials. In this study, five different types of open-graded asphalt mixtures containing different contents of RAP were designed, and relevant laboratory tests were conducted to assess the road performance of the warm-mixed recycled semi-flexible pavement material. The test results indicated that the road performance of warm-mixed reclaimed semi-flexible pavement materials has good resistance to rut deformation ability. Furthermore, the materials also had good water stability and fatigue performance. The grey correlation analysis shows that the asphalt binder content has the most significant correlation with the high-temperature stability, and the correlation between RAP content and the fatigue performance was the greatest. Furthermore, the curing age has the most remarkable with the low-temperature crack resistance of the warm-mixed reclaimed semi-flexible material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.