Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) was subjected to chemical extraction treatments with sodium chlorite (NaClO2) for delignification, as well as sodium hydroxide (NaOH) at various concentrations for extracting hemicelluloses gradually. Nanoindentation tests, X-Ray diffraction (XRD), and Fourier transform Raman (FT-Raman) spectroscopy studies revealed the changes in the mechanical properties and the nanostructure of the cell wall. The X-ray analysis indicated that delignification had only a moderate effect on the structure of the cell wall, while further alkali treatment led to major changes in the nanostructure. The nanoindentation tests showed that the indentation modulus and the hardness decreased after delignification and further alkali treatment, respectively. The indentation modulus of the cell wall with delignification decreased by 6.4% compared with the native cell wall, and the hardness decreased by 16.3%. After further alkali treatment, the indentation modulus and the hardness of the cell walls were 14.8% and 18.4% lower than that of the native cell walls, respectively. Additionally, the indentation modulus and the hardness of Chinese fir treated by NaOH decreased by 8.4%, and 2.1% in comparison with delignification, respectively. The results indicated that removal of hemicelluloses resulted in more damage to the mechanical properties of the cell wall compared with lignin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.