The advances in mobile computing and social networking services enable people to probe the dynamics of a city. In this paper, we address the problem of detecting and describing traffic anomalies using crowd sensing with two forms of data, human mobility and social media. Traffic anomalies are caused by accidents, control, protests, sport events, celebrations, disasters and other events. Unlike the existing traffic-anomaly-detection methods, we identify anomalies according to driversâȂŹ routing behavior on an urban road network. Here, a detected anomaly is represented by a sub-graph of a road network where peopleâȂŹs routing behaviors significantly differ from their original patterns. We then try to describe a detected anomaly by mining representative terms from the social media that people posted when the anomaly happened. The system for detecting such traffic anomalies can benefit both drivers and transportation authorities, e.g., by notifying drivers approaching an anomaly and suggesting alternative routes, as well as supporting traffic jam diagnosis and dispersal. We evaluated our system with a GPS trajectory dataset generated by over 30,000 taxicabs over a period of 3 months in Beijing, and a dataset of tweets collected from WeiBo, a Twitter-like social site in China. The results demonstrate the effectiveness and efficiency of our system.
Abstract-For the first time, real-time high-fidelity spatiotemporal data on transportation networks of major cities have become available. This gold mine of data can be utilized to learn about traffic behavior at different times and locations, potentially resulting in major savings in time and fuel, the two important commodities of the 21st century. As a first step towards the utilization of this data, in this paper, we study the real-world data collected from Los Angeles County transportation network in order to incorporate the data's intrinsic behavior into a time-series mining technique to enhance its accuracy for traffic prediction. In particular, we utilized the spatiotemporal behaviors of rush hours and events to perform a more accurate prediction of both shortterm and long-term average speed on road-segments, even in the presence of infrequent events (e.g., accidents). Our result shows that taking historical rush-hour behavior we can improve the accuracy of traditional predictors by up to 67% and 78% in short-term and long-term predictions, respectively. Moreover, we can incorporate the impact of an accident to improve the prediction accuracy by up to 91%.
As geo-realistic rendering of land surfaces is becoming commonplace in geographical information systems (GIS), games and online Earth visualization platforms, a new type of k Nearest Neighbor (kNN) queries, "surface" k Nearest Neighbor (skNN) queries, has emerged and been investigated recently, which extends the traditional kNN queries to a constrained third dimension (i.e., land surface). All existing techniques, however, assume a static environment, limiting their utility in emerging applications (e.g., Location-based Services) where objects move. In this paper, for the first time, we propose two exact methods that can continuously answer skNN queries in a highly dynamic environment which allows for arbitrary movements of data objects. The first method, inspired by the existing techniques in monitoring kNN in road networks [7] maintains an analogous counterpart of the Dijkstra Expansion Tree on land surface, called Surface Expansion Tree (SE-Tree). However, we show the concept of expansion tree for land surface does not work as SEtree suffers from intrinsic defects: it is fat and short, and hence does not improve the query efficiency. Therefore, we propose a superior approach that partitions SE-Tree into hierarchical chunks of pre-computed surface distances, called Angular Surface Index Tree (ASI-Tree). Unlike SE-tree, ASI-Tree is a well balanced thin and tall tree. With ASI-Tree, we can continuously monitor skNN queries efficiently with low CPU and I/O overheads by both speeding up the surface shortest path computations and localizing the searches. We experimentally verify the applicability and evaluate the efficiency of the proposed methods with both real world and synthetic data sets. ASI-Tree consistently and significantly outperforms SE-Tree in all cases.
Abstract-The advances in sensor technologies enable realtime collection of high-fidelity spatiotemporal data on transportation networks of major cities. In this paper, using two realworld transportation datasets: 1) incident data and 2) traffic data, we address the problem of predicting and quantifying the impact of traffic incidents. Traffic incidents include any non-recurring events on road networks, including accidents, weather hazard, road construction or work zone closures. By analyzing archived incident data, we classify incidents based on their features (e.g., time, location, type of incident). Subsequently, we model the impact of each incident class on its surrounding traffic by analyzing the archived traffic data at the time and location of the incidents. Consequently, in real-time, if we observe a similar incident (from real-time incident data), we can predict and quantify its impact on the surrounding traffic using our developed models. This information, in turn, can help drivers to effectively avoid impacted areas in real-time. To be useful for such real-time navigation application, and unlike current approaches, we study the dynamic behavior of incidents and model the impact as a quantitative time varying spatial span. In addition to utilizing incident features, we improve our classification approach further by analyzing traffic density around the incident area and the initial behavior of the incident. We evaluated our approach with very large traffic and incident datasets collected from the road networks of Los Angeles County and the results show that we can improve our baseline approach, which solely relies on incident features, by up to 45%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.