We theoretically investigate the preparation of mid-infrared (MIR) spectrally-uncorrelated biphotons from a spontaneous parametric down-conversion process using doped LN crystals, including MgO doped LN, ZnO doped LN, and In2O3 doped ZnLN with doping ratio from 0 to 7 mol%. The tilt angle of the phase-matching function and the corresponding poling period are calculated under type-II, type-I, and type-0 phase-matching conditions. We also calculate the thermal properties of the doped LN crystals and their performance in Hong-Ou-Mandel interference. It is found that the doping ratio has a substantial impact on the group-velocity-matching (GVM) wavelengths. Especially, the GVM2 wavelength of co-doped InZnLN crystal has a tunable range of 678.7 nm, which is much broader than the tunable range of less than 100 nm achieved by the conventional method of adjusting the temperature. It can be concluded that the doping ratio can be utilized as a degree of freedom to manipulate the biphoton state. The spectrally uncorrelated biphotons can be used to prepare pure single-photon source and entangled photon source, which may have promising applications for quantum-enhanced sensing, imaging, and communications at the MIR range.
We theoretically investigated spectrally uncorrelated biphotons generated in a counter-propagating spontaneous parametric downconversion (CP-SPDC) from periodically poled M T i O X O 4 ( M = K , Rb, Cs; X = P , As) crystals. By numerical calculation, it was found that the five crystals from the KTP family can be used to generate heralded single photons with high spectral purity and wide tunability. Under the type-0 phase-matching condition, the purity at 1550 nm was between 0.91 and 0.92, and the purity can be maintained over 0.90 from 1500 nm to 2000 nm wavelength. Under the type-II phase-matching condition, the purity at 1550 nm was 0.96, 0.97, 0.97, 0.98, and 0.98 for PPKTP, PPRTP, PPKTA, PPRTA, and PPCTA, respectively; furthermore, the purity can be kept over 0.96 for more than 600 nm wavelength range. We also simulated the Hong–Ou–Mandel interference between independent photon sources for PPRTP crystals at 1550 nm, and interference visibility was 92% (97%) under the type-0 (type-II) phase-matching condition. This study may provide spectrally pure narrowband single-photon sources for quantum memories and quantum networks at telecom wavelengths.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.