Two kinds of commercial LED phosphors (green phosphor LuAG:Ce3+ and red phosphor CaAlSiN3:Eu2+) with polymethyl methacrylate (PMMA) powders were mixed to prepare film phosphors with tunable emission peak in photoluminescence spectrum by flat vulcanizing machine under the temperature of 170 oC and pressure of 2 MPa. The physical phase, surface morphology, transmittance, luminescence spectra of samples were characterized by means of X-ray diffraction (XRD), Environmental scanning electron microscopy (ESEM), Ultraviolet-Visible (UV-Vis) spectrophotometry and Fluorescence spectrometer. The results show that the film phosphors phase was consistent with raw phosphors, phosphor particles were uniformly distributed, and fluorescence spectra with different proportions of phosphors in different position can be adjusted. Tested by HSP 3000 spectrum analyzer, the white LEDs fabricated by blue chip and composite film phosphor containing 5 wt% green phosphor and 1.5 wt.% red phosphor, which refers to the remote excitation technique, possessed color coordinate of (0.3715, 0.3280) and color rendering index (CRI) of 87 when it was driven at power of 36 V/140 mA, reaching the international advanced level.
This paper is conducted to explore a new characterization method as a supplement to the traditional roughness characterization. The main research includes the extraction and evaluation of damage features of ceramic surface morphology by applying wavelet methods, the extraction of damage features in surface contours by using wavelet analysis, and the quantitative evaluation of damage degree by using damage rate and damage mean spacing. By comparing various fractal dimension calculation methods, a fractal dimension method suitable for calculating the ceramic surface was selected, and the fractal method was used to describe the ceramic surface topography as a whole. By comparing different methods of calculating the fractal dimension and further verifying them with the measured three-dimensional morphology, it is found that the vibrational method is more suitable for calculating the fractal dimension of ceramic surface, and its calculation accuracy is investigated, and the results show that the method is a reliable one. Based on the fractal theory, a mathematical model of surface wear and surface sealing was established. Further study of the model shows that the surface with a large fractal dimension has a good sealing effect; the surface corresponding to the best fractal dimension is the most resistant to wear. The fractal method can characterize the complexity of the surface profile as a whole. The wavelet method can describe the ceramic surface profile from a local perspective, and the combination of the two methods can characterize the ceramic surface well. Finally, the experimental device of the ceramic surface defect detection system is constructed, and the joint debugging of hardware and software is completed. Under different light source intensities, ceramic image samples are collected, and the accuracy detection experiments of sample defective edges are conducted, and the results show that the light source has a small impact on the accuracy of ceramic defective edge detection. The results show that the light source has more influence on the accuracy of scratch detection. The results show that the system constructed in this thesis has good applicability for different ceramic sample detection.
A series of ytterbium and erbium co-doped sodium yttrium fluoride (NaYF4:Yb3+, Er3+) ceramics have been successfully prepared by pressureless sintering. The ceramic samples were characterized by X-ray diffraction (XRD), photoluminescence (PL), density and field emission scanning electron microscope (FESEM). The results showed that the phases of the NaYF4:Yb3+, Er3+ ceramic samples transformed when the sintering temperature was changed. The ceramic samples sintered below 600 oC contained both cubic α-NaYF4:Yb3+, Er3+ and hexagonal β-NaYF4:Yb3+, Er3+. The sample sintered at 600oC is the pure hexagonal β-NaYF4:Yb3+, Er3+. When the sintering temperature is above 600 oC, the ceramic samples present the α-NaYF4:Yb3+, Er3+ again. The fluorescence intensity increased firstly and then decreased with the sintering temperature increasing. The luminous intensity of the sample sintered at 600 oC was the highest. The densities of as-prepared ceramic sample increased with the sintering temperature rising. The samples sintered at 600 oC with different holding time possessed the similar crystal phases (β-NaYF4:Yb3+, Er3+) and fluorescence intensity. As the holding time increased, the densities of the samples increased. To obtain more dense ceramics, the ceramics using β-NaYF4:Yb3+, Er3+ powders were prepared by spark plasma sintering (SPS). The maximum relative density reached 97%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.