SUMMARY Maintenance of proper levels of the methyl donor S-adenosylmethionine (SAM) is critical for a wide variety of biological processes. We demonstrate that the N6-adenosine methyltransferase METTL16 regulates expression of human MAT2A, which encodes the SAM synthetase expressed in most cells. Upon SAM depletion by methionine starvation, cells induce MAT2A expression by enhanced splicing of a retained intron. Induction requires METTL16 and its methylation substrate, a vertebrate conserved hairpin (hp1) in the MAT2A 3´ UTR. Increasing METTL16 occupancy on the MAT2A 3´ UTR is sufficient to induce efficient splicing. We propose that under SAM-limiting conditions, METTL16 occupancy on hp1 increases due to inefficient enzymatic turnover, which promotes MAT2A splicing. We further show that METTL16 is the long-unknown methyltransferase for the U6 spliceosomal snRNA. These observations suggest that the conserved U6 snRNA methyltransferase evolved an additional function in vertebrates to regulate SAM homeostasis.
SUMMARY Long noncoding RNAs (lncRNAs) have emerged as regulators of diverse biological processes. Here we describe the initial functional analysis of a poorly characterized human lncRNA (LINC00657) that is induced after DNA damage, which we termed Noncoding RNA Activated by DNA Damage or NORAD. NORAD is highly conserved and abundant, with expression levels of approximately 500–1,000 copies per cell. Remarkably, inactivation of NORAD triggers dramatic aneuploidy in previously karyotypically-stable cell lines. NORAD maintains genomic stability by sequestering PUMILIO proteins, which repress the stability and translation of messenger RNAs to which they bind. In the absence of NORAD, PUMILIO proteins drive chromosomal instability by hyperactively repressing mitotic, DNA repair, and DNA replication factors. These findings introduce a mechanism that regulates the activity of a deeply conserved and highly dosage-sensitive family of RNA binding proteins and reveal unanticipated roles for a lncRNA and PUMILIO proteins in the maintenance of genomic stability.
Recent therapeutic successes have renewed interest in drug combinations, but experimental screening approaches are costly and often identify only small numbers of synergistic combinations. The DREAM consortium launched an open challenge to foster the development of in silico methods to computationally rank 91 compound pairs, from the most synergistic to the most antagonistic, based on gene-expression profiles of human B cells treated with individual compounds at multiple time points and concentrations. Using scoring metrics based on experimental dose-response curves, we assessed 32 methods (31 community-generated approaches and SynGen), four of which performed significantly better than random guessing. We highlight similarities between the methods. Although the accuracy of predictions was not optimal, we find that computational prediction of compound-pair activity is possible, and that community challenges can be useful to advance the field of in silico compound-synergy prediction.
SUMMARY MicroRNAs (miRNAs) perform critical functions in normal physiology and disease by associating with Argonaute proteins and downregulating partially complementary messenger RNAs (mRNAs). To identify new regulators of the miRNA pathway, we employed CRISPR-Cas9 genome-wide loss-of-function screening coupled with a fluorescent reporter of miRNA activity in human cells. Iterative rounds of screening revealed a novel mechanism whereby target engagement by Argonaute 2 (AGO2) triggers its hierarchical, multi-site phosphorylation by CSNK1A1 on a set of highly conserved residues (S824-S834), followed by rapid dephosphorylation by the ANKRD52-PPP6C phosphatase complex. Although genetic and biochemical studies demonstrated that AGO2 phosphorylation on these residues inhibits target mRNA binding, inactivation of this phosphorylation cycle globally impairs miRNA-mediated silencing. Analysis of the transcriptome-wide binding profile of non-phosphorylatable AGO2 revealed a dramatic expansion of the target repertoire bound at steady-state, effectively reducing the active pool of AGO2 on a per target basis. These findings support a model in which an AGO2 phosphorylation cycle stimulated by target engagement regulates miRNA:target interactions to maintain the global efficiency of miRNA-mediated silencing.
There are currently some problems in the field of chemical synthesis, such as environmental impact, energy loss, and safety, that need to be tackled urgently. An interdisciplinary approach, based on different backgrounds, may succeed in solving these problems. Organisms can be chosen as potential platforms for materials fabrication, since biosystems are natural and highly efficient. Here, an example of how to solve some of these chemical problems through biology, namely, through a novel biological strategy of coupling intracellular irrelated biochemical reactions for controllable synthesis of multicolor CdSe quantum dots (QDs) using living yeast cells as a biosynthesizer, is demonstrated. The unique fluorescence properties of CdSe QDs can be utilized to directly and visually judge the biosynthesis phase to fully demonstrate this strategy. By such a method, CdSe QDs, emitting at a variety of single fluorescence wavelengths, can be intracellularly, controllably synthesized at just 30°C instead of at 300°C with combustible, explosive, and toxic organic reagents. This green biosynthetic route is a novel strategy of coupling, with biochemical reactions taking place irrelatedly, both in time and space. It involves a remarkable decrease in reaction temperature, from around 300 °C to 30 °C and excellent color controllability of CdSe photoluminescence. It is well known that to control the size of nanocrystals is a mojor challenge in the biosynthesis of high‐quality nanomaterials. The present work demonstrates clearly that biological systems can be creatively utilized to realize controllable unnatural biosynthesis that normally does not exist, offering new insights for sustainable chemistry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.