The cosmic evolution of gamma-ray burst (GRB) luminosity is essential for revealing the GRB physics and for using GRBs as cosmological probes. We investigate the luminosity evolution of long GRBs with a large sample of 258 Swift/BAT GRBs. By describing the peak luminosity evolution of individual GRBs as L z 1, we get k 1.49 0.19 = using the nonparametric τ statistics method without considering observational biases of GRB trigger and redshift measurement. By modeling these biases with the observed peak flux and characterizing the peak luminosity function of long GRBs as a smoothly broken powerlaw with a break that evolves as, we obtain k 1.14 b 0.47through simulations based on the assumption that the long GRB rate follows the star formation rate incorporatingthe cosmic metallicity history. The derived k and k b values are systematically smaller than thosereported in previous papers. By removing the observational biases of the GRB trigger and redshift measurement based on our simulation analysis, we generate mock complete samples of 258 and 1000 GRBs to examine how these biases affectthe τ statistics method. We get k 0.94 0.14 = and k 0.80 0.09 = for the two samples, indicating that these observational biases may lead to overestimatingthe k value. With the large uncertainty of k b derived from our simulation analysis, onecannot even convincingly argue for a robust evolution feature of the GRB luminosity.
In the local universe, disk galaxies are generally well evolved and Toomre stable. Their collisions with satellite galaxies naturally produce ring structures, which have been observed and extensively studied. By contrast, at high redshifts, disk galaxies are still developing and clumpy. These young galaxies interact with each other more frequently. However, the products of their collisions remain elusive. Here, we systematically study the minor collisions between a clumpy galaxy and a satellite on orbits with different initial conditions, and find a new structure that is different from the local collisional ring galaxies. The clumpiness of the target galaxy is fine-tuned by the values of Toomre parameter, Q. Interestingly, a thick and knotty ring structure is formed without any sign of a central nucleus in the target galaxy. Our results provide a promising explanation of the empty ring galaxy recently observed in R5519 at redshift z = 2.19. Moreover, we show that the clumpy state of the collided galaxy exists for a much longer timescale compared to isolated self-evolved clumpy galaxies that have been widely investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.