The fiber pullout is a main failure after the fiber is broken in the tension of glass fiber reinforced polymer (GFRP) bolt. In this paper, the numerical analysis is done on the distribution of both fiber normal force and interface shear stress. The results show that, on the ideal interface, the fiber pullout occurs from the lower end to the upper end of the matrix gradually, and both the normal stress of the fiber and the shear stress of the ideal interface gradually increase from the lower end to the upper end. With the increase of the interface layer thickness, the shear stress concentration area on the interface is enlarged while the stress applied is reduced, and the displacement of GFRP deformation is increasing sharply. This means that the capacity of GFRP deformation is enhanced. As a soft elastic body, the interface layer with a smaller elastic modulus can make the fiber stress and the interface shear stress sharply small and well dispersed. In addition, the load can be effectively transferred to the reinforced phase fibers in a bigger interfacial layer elastic modulus with a certain strength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.