Oriented object detection is a crucial task in computer vision. Current top-down oriented detection methods usually directly detect entire objects, and not only neglecting the authentic direction of targets, but also do not fully utilise the key semantic information, which causes a decrease in detection accuracy. In this study, we developed a single-stage rotating object detector via two points with a solar corona heatmap (ROTP) to detect oriented objects. The ROTP predicts parts of the object and then aggregates them to form a whole image. Herein, we meticulously represent an object in a random direction using the vertex, centre point with width, and height. Specifically, we regress two heatmaps that characterise the relative location of each object, which enhances the accuracy of locating objects and avoids deviations caused by angle predictions. To rectify the central misjudgement of the Gaussian heatmap on high-aspect ratio targets, we designed a solar corona heatmap generation method to improve the perception difference between the central and non-central samples. Additionally, we predicted the vertex relative to the direction of the centre point to connect two key points that belong to the same goal. Experiments on the HRSC 2016, UCASAOD,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.