Generative adversarial networks (GANs) have been a popular deep generative model for real-word applications. Despite many recent efforts on GANs have been contributed, however, mode collapse and instability of GANs are still open problems caused by their adversarial optimization difficulties. In this paper, motivated by the cooperative co-evolutionary algorithm, we propose a Cooperative Dual Evolution based Generative Adversarial Network (CDE-GAN) to circumvent these drawbacks. In essence, CDE-GAN incorporates dual evolution with respect to generator(s) and discriminators into a unified evolutionary adversarial framework, thus it exploits the complementary properties and injects dual mutation diversity into training to steadily diversify the estimated density in capturing multi-modes, and to improve generative performance. Specifically, CDE-GAN decomposes the complex adversarial optimization problem into two subproblems (generation and discrimination), and each subproblem is solved with a separated subpopulation (E-Generators and E-Discriminators), evolved by an individual evolutionary algorithm. Additionally, to keep the balance between E-Generators and E-Discriminators, we proposed a Soft Mechanism to cooperate them to conduct effective adversarial training. Extensive experiments on one synthetic dataset and three real-world benchmark image datasets, demonstrate that the proposed CDE-GAN achieves the competitive and superior performance in generating good quality and diverse samples over baselines. The code and more generated results are available at our project homepage https: //shiming-chen.github.io/CDE-GAN-website/CDE-GAN.html.
Generative Adversarial Networks (GANs) have achieved remarkable achievements in image synthesis. These successes of GANs relies on large scale datasets, requiring too much cost. With limited training data, how to stable the training process of GANs and generate realistic images have attracted more attention. The challenges of Data-Efficient GANs (DE-GANs) mainly arise from three aspects: (i) Mismatch Between Training and Target Distributions, (ii) Overfitting of the Discriminator, and (iii) Imbalance Between Latent and Data Spaces. Although many augmentation and pre-training strategies have been proposed to alleviate these issues, there lacks a systematic survey to summarize the properties, challenges, and solutions of DE-GANs. In this paper, we revisit and define DE-GANs from the perspective of distribution optimization. We conclude and analyze the challenges of DE-GANs. Meanwhile, we propose a taxonomy, which classifies the existing methods into three categories: Data Selection, GANs Optimization, and Knowledge Sharing. Last but not the least, we attempt to highlight the current problems and the future directions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.