Background Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies worldwide because of rapid progression and high incidence of metastasis or recurrence. Accumulating evidence shows that CD73-expressing tumor cell is implicated in development of several types of cancer. However, the role of CD73 in HCC cell has not been systematically investigated and its underlying mechanism remains elusive. Methods CD73 expression in HCC cell was determined by RT-PCR, Western blot, and immunohistochemistry staining. Clinical significance of CD73 was evaluated by Cox regression analysis. Cell counting kit-8 and colony formation assays were used for proliferation evaluation. Transwell assays were used for motility evaluations. Co-immunoprecipitation, cytosolic and plasma membrane fractionation separation, and ELISA were applied for evaluating membrane localization of P110β and its catalytic activity. NOD/SCID/γc(null) (NOG) mice model was used to investigate the in vivo functions of CD73. Results In the present study, we demonstrate that CD73 was crucial for epithelial-mesenchymal transition (EMT), progression and metastasis in HCC. CD73 expression is increased in HCC cells and correlated with aggressive clinicopathological characteristics. Clinically, CD73 is identified as an independent poor prognostic indicator for both time to recurrence and overall survival. CD73 knockdown dramatically inhibits HCC cells proliferation, migration, invasion, and EMT in vitro and hinders tumor growth and metastasis in vivo. Opposite results could be observed when CD73 is overexpressed. Mechanistically, adenosine produced by CD73 binds to adenosine A2A receptor (A2AR) and activates Rap1, which recruits P110β to the plasma membrane and triggers PIP3 production, thereby promoting AKT phosphorylation in HCC cells. Notably, a combination of anti-CD73 and anti-A2AR achieves synergistic depression effects on HCC growth and metastasis than single agent alone. Conclusions CD73 promotes progression and metastasis through activating PI3K/AKT signaling, indicating a novel prognostic biomarker for HCC. Our data demonstrate the importance of CD73 in HCC in addition to its immunosuppressive functions and revealed that co-targeting CD73 and A2AR strategy may be a promising novel therapeutic strategy for future HCC management. Electronic supplementary material The online version of this article (10.1186/s13045-019-0724-7) contains supplementary material, which is available to authorized users.
The industrial chlorinated paraffins (CPs) are comprised of short-chain (SCCPs), medium chain (MCCPs), and long chain (LCCPs) CPs. Although SCCPs and MCCPs are environmentally ubiquitous, little is known about CPs in humans. This study established a method for simultaneous determination of 261 SCCP, MCCP, and LCCP congener groups in one injection by reversed ultrahigh-pressure liquid chromatography coupled with chlorine-enhanced electron spray ionization-quadrupole time-of-flight mass spectrometry. The method yielded good peak shapes, high sensitivities, and low coeluted interferences for all examined CPs. LCCPs with carbon numbers of 21 to 27 were detected in their standard technical mixtures, and MCCPs and LCCPs impurities were detected in the LCCP and MCCP standard technical mixtures, respectively, causing quantification deviations when these mixtures were used for calibration. After considering these impurities' contribution to the total concentrations, the quantification accuracies for ∑SCCPs, ∑MCCPs, and ∑LCCPs ranged from 95.1 ± 8.4% to 105.6 ± 9.2% in the eight CP technical mixtures. The method was successfully applied to determine CPs in about 6 g human blood samples from a general population, and estimated ∑SCCP, ∑MCCP, and ∑LCCP concentrations to be 370-35 000, 130-3200, and 22-530 ng/g lipid weight (n = 50), respectively. A comparison of blood and soil/air CP profiles from the same areas suggested a relatively higher potential for the accumulation of SCCPs, compared with MCCPs, in humans.
The dynamic change and serial monitoring of the SII represent new indicators for predicting the early recurrence of HCC determining advance optimal therapy in advance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.