The influence of steric effects on the performances of space electroosmotic thrusters (EOTs) was numerically delineated in soft nanochannels for which its walls are covered with polyelectrolyte materials. The size effect of the ionic species, namely the steric effect, is neglected in many previous research studies, but it has vital influences on electrostatic potential and electroosmotic velocity, which is further introduced into the present study in order to understand and improve the exploration of nano electroosmotic thrusters with soft channels. The thruster’s thrust, specific impulse, total input power, thruster efficiency and thrust-to-power ratio are computed based on finite difference methods. It is found that the thruster’s thrust and specific impulse increase with the steric parameter while the efficiency and thrust-to-power ratio possess opposite trends due to the enhancement of Joule heating dissipation. For real situations with the consideration of ion size, although the thruster’s thrust could be promoted, the efficiency is only 30–70%, and the peak values of thrust-to-power ratio fade away.
We report instability of the single-walled carbon nanotubes (SWCNT) filled with non-Newtonian Jeffrey fluid. Our objective is to get the influences of relaxation time and retardation time of the Jeffrey fluid on the vibration frequency and the decaying rate of the amplitude of carbon nanotubes. An elastic Euler–Bernoulli beam model is used to describe vibrations and structural instability of the carbon nanotubes. A new vibration equation of an SWCNT conveying Jeffrey fluid is first derived by employing Euler–Bernoulli beam equation and Cauchy momentum equation taking constitutive relation of Jeffrey fluid into account. The complex vibrating frequencies of the SWCNT are computed by solving a cubic eigenvalue problem based upon differential quadrature method (DQM). It is interesting to find from computational results that retardation time has significant influences on the vibration frequency and the decaying rate of the amplitude. Especially, the vibration frequency decreases and critical velocity increases with the retardation time. That is to say, longer retardation time makes the SWCNT more stable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.