In the process of host–pathogen interactions, bacterial pathogens always employ some special genes, e.g., virulence factors (VFs) to interact with host and cause damage or diseases to host. A number of VFs have been identified in bacterial pathogens that confer upon bacterial pathogens the ability to cause various types of damage or diseases. However, it has been clarified that some of the identified VFs are also encoded in the genomes of nonpathogenic bacteria, and this finding gives rise to considerable controversy about the definition of virulence factor. Here 1988 virulence factors of 51 sequenced pathogenic bacterial genomes from the virulence factor database (VFDB) were collected, and an orthologous comparison to a non-pathogenic bacteria protein database was conducted using the reciprocal-best-BLAST-hits approach. Six hundred and twenty pathogen-specific VFs and 1368 common VFs (present in both pathogens and nonpathogens) were identified, which account for 31.19% and 68.81% of the total VFs, respectively. The distribution of pathogen-specific VFs and common VFs in pathogenicity islands (PAIs) was systematically investigated, and pathogen-specific VFs were more likely to be located in PAIs than common VFs. The function of the two classes of VFs were also analyzed and compared in depth. Our results indicated that most but not all T3SS proteins are pathogen-specific. T3SS effector proteins tended to be distributed in pathogen-specific VFs, whereas T3SS translocation proteins, apparatus proteins, and chaperones were inclined to be distributed in common VFs. We also observed that exotoxins were located in both pathogen-specific and common VFs. In addition, the architecture of the two classes of VFs was compared, and the results indicated that common VFs had a higher domain number and lower domain coverage value, revealed that common VFs tend to be more complex and less compact proteins.
Introduction: Suffering from osteoarthritis is prevalent among elderly patients so the use of intra-articular injection of medical ozone may well be the effective way to relieve their pain. Aim:To evaluate the effect of intra-articular injection of medical ozone given into the knee of the osteoarthritis patients, and to compare it with taking celecoxib and glucosamine orally. Materials and Methods:In the present study, 76 patients suffering from osteoarthritis were randomly assigned into two groups. In the ozone group, 20 ml ozone-oxygen mixture gas concentration of 20 μg/ml was injected into knee articular cavity and each patient took oral celecoxib and glucosamine hydrochloride. Patients in control group only took the celecoxib and glucosamine hydrochloride orally.Pain score and Lysholm knee score were measured prior to the injection (pretreatment) and at one, three, six weeks after the beginning of the treatment (posttreatment).Results: After the treatment, the pain intensity and function significantly improved in the two groups compared with the pretreatment (p<0.05). In the ozone group, three weeks after intervention, the pain score improved significantly when compared with the control group (p<0.05).After the treatment, the lysholm scores increased significantly (p<0.05), but in the ozone group, it improved faster. Conclusion:Intra-articular injection of ozone plus oral celecoxib and glucosamine could significantly decrease pain intensity in patients with mild to moderate Knee Osteoarthritis (KOA), and improve their functional status early than oral celecoxib and glucosamine only.
BackgroundDuring the past two decades, avian influenza A H9N2 viruses have spread geographically and ecologically in China. Other than its current role in causing outbreaks in poultry and sporadic human infections by direct transmission, H9N2 virus could also serve as an progenitor for novel human avian influenza viruses including H5N1, H7N9 and H10N8. Hence, H9N2 virus is becoming a notable threat to public health. However, despite multiple lineages and genotypes that were detected by previous studies, the migration dynamics of the H9N2 virus in China is unclear. Increasing such knowledge would help us better prevent and control H9N2 as well as other future potentially threatening viruses from spreading across China. The objectives of this study were to determine the source, migration patterns, and the demography history of avian influenza A H9N2 virus that circulated in China.ResultsUsing Bayesian phylogeography framework, we showed that the H9N2 virus in mainland China may have originated from the Hong Kong Special Administrative Region (SAR). Southern China, most likely the Guangdong province acts as the primary epicentre for multiple H9N2 strains spreading across the whole country, and eastern China, most likely the Jiangsu province, acts as an important secondary source to seed outbreaks. Our demography inference suggests that during the long-term migration process, H9N2 evolved into multiple diverse lineages and then experienced a selective sweep, which reduced its genetic diversity. Importantly, such a selective sweep may pose a greater threat to public health because novel strains confer higher fitness advantages than strains being replaced and could generate new viruses through reassortment.ConclusionOur analyses indicate that migratory birds, poultry trade and transportation have all contributed to the spreading of the H9N2 virus in China. The ongoing migration and evolution of H9N2, which poses a constant threat to the human population, highlights the need for a more comprehensive surveillance of wild birds and for the enhancement of biosafety for China’s poultry industry.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-15-1110) contains supplementary material, which is available to authorized users.
A comprehensive study of cross-species transmission and inter-regional migration would provide insights into the global ecology of influenza A viruses (IAVs). To this end, we assembled 17,241 non-redundant IAV whole-genome sequences with complete epidemiological information. We hierarchically divided the movements of IAVs into the cross-species transmission in each region and the inter-regional migration driven by each host species. We then systematically identified the potential cross-species transmission and inter-regional migration events. Cross-species transmission networks were obtained for each gene segment of the IAVs. Waterfowl, domestic birds and swine showed higher degrees of connection than did other species in all of the transmission networks. East Asia and Southeast Asia were hot regions for avian-mammal transmissions. Swine and migratory birds were the dominant species for global virus delivery. The importance of swine was reemphasized because it has not only provided an environment for adaptive evolution during the avian-human transmission of IAVs (as incubators) but also served as a key species for the global dissemination of the viruses (as carriers). Therefore, monitoring the global live trade of swine and survey of migratory birds along flyways would be beneficial for the prevention and control of IAVs.
Stenotrophomonas maltophilia is a global multidrug-resistant human opportunistic pathogen in clinical environments. Stenotrophomonas maltophilia is also ubiquitous in aqueous environments, soil, and plants. Various molecular typing methods have revealed that S. maltophilia exhibits high levels of phenotypic and genotypic diversity. However, information regarding the genomic diversity within S. maltophilia and the corresponding genetic mechanisms resulting in said diversity remain scarce. The genome sequences of 17 S. maltophilia strains were selected to investigate the mechanisms contributing to genetic diversity at the genome level. The core and large pan-genomes of the species were first estimated, resulting in a large, open pan-genome. A species phylogeny was also reconstructed based on 344 orthologous genes with one copy per genome, and the contribution of four evolutionary mechanisms to the species genome diversity was quantified: 15%-35% of the genes showed evidence for recombination, 0%-25% of the genes in one genome were likely gained, 0%-44% of the genes in some genomes were likely lost, and less than 0.3% of the genes in a genome were under positive selection pressures. We observed that, among the four main mechanisms, homologous recombination plays a key role in maintaining diversity in S. maltophilia. In this study, we provide an overview of evolution in S. maltophilia to provide a better understanding of its evolutionary dynamics and its relationship with genome diversity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.