UDP-xylose (UDP-Xyl) is the Xyl donor used in the synthesis of major plant cell-wall polysaccharides such as xylan (as a backbone-chain monosaccharide) and xyloglucan (as a branching monosaccharide). The biosynthesis of UDP-Xyl from UDP-glucuronic acid (UDP-GlcA) is irreversibly catalyzed by UDP-glucuronic acid decarboxylase (UXS). Until now, little has been known about the physiological roles of UXS in plants. Here, we report that AtUXS1, AtUXS2, and AtUXS4 are located in the Golgi apparatus whereas AtUXS3, AtUXS5, and AtUXS6 are located in the cytosol. Although all six single AtUXS T-DNA mutants and the uxs1 usx2 uxs4 triple mutant show no obvious phenotype, the uxs3 uxs5 uxs6 triple mutant has an irregular xylem phenotype. Monosaccharide analysis showed that Xyl levels decreased in uxs3 uxs5 uxs6 and linkage analysis confirmed that the xylan content in uxs3 xus5 uxs6 declined, indicating that UDP-Xyl from cytosol AtUXS participates in xylan synthesis. Gel-permeation chromatography showed that the molecular weight of non-cellulosic polysaccharides in the triple mutants, mainly composed of xylans, is lower than that in the wild type, suggesting an effect on the elongation of the xylan backbone. Upon saccharification treatment stems of the uxs3 uxs5 uxs6 triple mutants released monosaccharides with a higher efficiency than those of the wild type. Taken together, our results indicate that the cytosol UXS plays a more important role than the Golgi-localized UXS in xylan biosynthesis.
1. The benefits to trophobionte hemipterans are affected by the ant tending level, which is a widely accepted statement. The ant tending level is closely related to multiple factors. It is clear that the ant tending level can be affected by the temporal factor, age-specific, the density of the hemipterans, and quantity and quality of honeydew produced by hemipterans.2. Few studies of ant-hemipteran mutualisms have reported the patterns of host plants-dependent effects, and whether host plants influence the ant tending level that is also unclear. As such, laboratory experiments were conducted to test whether the colony growth rate of an invasive mealybug Phenacoccus solenopsis Tinsley, parasitism of Aenasius bambawalei Hayat, an dominant parasitoid of P. solenopsis, are affected by tending by ghost ants (Tapinoma melanocephalum(Fabricius)], host plants (tomato and cotton), and interactions between the two factors. The difference in the ant tending level between the host plants was also determined.3. The results showed that mealybug colony growth and parasitism were significantly affected by ant tending and host plant separately. There were significant interactions between the independent factors on the mealybug colony growth rate and percentage parasitism. These results suggest that benefits to mealybugs are host plant-dependent.
Although density-dependent benefits to hemipterans from ant tending have been measured many times, few studies have focused on integrated effects such as interactions between ant tending, natural enemy density, and hemipteran density. In this study, we tested whether the invasive mealybug Phenacoccus solenopsis is affected by tending by ghost ants (Tapinoma melanocephalum), the presence of parasitoids, mealybug density, parasitoid density and interactions among these factors. Our results showed that mealybug colony growth rate and percentage parasitism were significantly affected by ant tending, parasitoid presence, and initial mealybug density separately. However, there were no interactions among the independent factors. There were also no significant interactions between ant tending and parasitoid density on either mealybug colony growth rate or percentage parasitism. Mealybug colony growth rate showed a negative linear relationship with initial mealybug density but a positive linear relationship with the level of ant tending. These results suggest that benefits to mealybugs are density-independent and are affected by ant tending level.
Glucuronoarabinoxylan is the major hemicellulose in grass cell walls, yet the mechanism of xylan synthesis in monocot plants is still unclear. Unraveling the genes involved in the biosynthesis of xylan in rice will be very important for the utilization of rice straw as a source of bioenergy in the future. In this report, we investigated the functional role of a rice gene homologous to Arabidopsis IRREGULAR XYLEM10 (IRX10), belonging to the glycosyl transferase (GT) gene family 47 (GT47), in the biosynthesis of xylan. The protein sequence of OsGT47A from rice exhibits a 93.49% similarity to IRX10, which is involved in the biosynthesis of glucuronoxylan in Arabidopsis. Phylogenetic analysis of the GT47 glycosyl transferase family in the rice genome revealed that OsGT47A is a closely related homolog of IRX10 and IRX10L. Expression pattern analysis showed that the OsGT47A gene is highly expressed in the rice stem. Overexpression of OsGT47A in the irx10 irx10L double mutant rescued the plant growth phenotype and restored secondary wall thickness. Analysis of monosaccharides indicated that the rescued plants had levels of xylose identical to those of the wild type plants, and the fluorescence signals were restored in the complementation plants by xylan immunolocalization. The OsGT47A complementation under the native promoter of Arabidopsis IRX10L (ProIRX10L) partially rescued the double mutant, indicating that OsGT47A is functionally equivalent to IRX10L. Together, these results suggest that the IRX10 homolog OsGT47A exhibits functional conservation and is most likely involved in xylan synthesis in rice.
Honeydew produced by hemipterans is known as a possible kairomonal resource for parasitoids. The application of artificial honeydew effectively improves the performance of natural enemies. Aenasius bambawalei is a particularly dominant and aggressive endoparasitoid of the invasive mealybug Phenacoccus solenopsis. Our previous study showed that tending by the ghost ant Tapinoma melanocephalum significantly reduced the parasitism of A. bambawalei. We hypothesize that ghost ant tending influences host location of parasitoids by manipulating the composition of the honeydew produced by mealybugs. In this study, we tested whether the honeydew composition differs between treatments with and without ant attendance and whether changes in the honeydew influence the performance of A. bambawalei. Our results show that the sucrose concentration increased significantly in the ant-attendance treatment but decreased when ant attendance was switched to an antexclusion treatment; the inverse was true for the glucose concentration. Compared with the plastic honeydew treatment (mealybug with ant attendance), parasitoids spent much more time searching, had longer lifespans and showed higher parasitism on filter papers treated with natural honeydew (mealybug without any pre-treatment) and those treated with convalescent honeydew (mealybug having experienced ant attendance and then switched to ant exclusion). These results support the hypothesis that ant tending influences the performance of parasitoids by manipulating honeydew composition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.