Formulation of the model suitable for the description of the full material deformation diagram is considered, with axial compression applied, and a loosening component added to elastic and plastic deformation. The materials involved are initially heterogeneous environments like rocks and artificial construction materials, like concrete. Such materials, being in a stationary state, stable for small disturbances, can be interpreted as dissipative structures after the limit of elasticity is reached. The deformation and destruction processes are analysed as instability hierarchy, resulting from self-organization. Methods of mathematical catastrophe theory are applied for the model construction. The energy state function is presented as the sum of the potential function, responsible for reversible deformations and disturbances. The latter involves an imperfection parameter (a controlling one), connected with damageability and responsible for the structurization process. The state equation is obtained by energy function minimization on the order parameter and is supplemented with the kinetic equation for the imperfection parameter. The synergetic methods are shown to be advantageous for the problems of formulating physically well-grounded nonlinear defining equations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.