The purpose of this study was to evaluate the feasibility and applicability of object-oriented crop classification using Sentinel-1 images in the Google Earth Engine (GEE). In this study, two study areas (Keshan farm and Tongnan town) with different average plot sizes in Heilongjiang Province, China, were selected. The research time was two consecutive years (2018 and 2019), which were used to verify the robustness of the method. Sentinel-1 images of the crop growth period (May to September) in each study area were composited with three time intervals (10 d, 15 d and 30 d). Then, the composite images were segmented by simple noniterative clustering (SNIC) according to different sizes and finally, the training samples and processed images were input into a random forest classifier for crop classification. The results showed the following: 1) the overall accuracy of using the object-oriented classification method combined composite Sentinel-1 image represented a great improvement compared with the pixel-based classification method in areas with large average plots (increase by 10%), the applicable scope of the method depends on the plot size of the study area; 2) the shorter time interval of the composite Sentinel-1 image was, the higher the crop classification accuracy was; 3) the features with high importance of composite Sentinel-1 images with different time intervals were mainly distributed in July, August and September, which was mainly due to the large differences in crop growth in these months; and 4) the optimal segmentation size of crop classification was closely related to image resolution and plot size. Previous studies usually emphasize the advantages of object-oriented classification. Our research not only emphasizes the advantages of object-oriented classification but also analyzes the constraints of using object-oriented classification, which is very important for the follow-up research of crop classification using object-oriented and synthetic aperture radar (SAR).
In order to explore the spatiotemporal changes and driving factors of soil organic carbon (SOC) in the agro-pastoral ecotone of northern China, we took Aohan banner, Chifeng City, Inner Mongolia Autonomous Region as the study area, used the random forest (RF) method to predict the SOC from 1989 to 2018, and the geographic detector method (GDM) was applied to analyze quantitatively the natural and anthropogenic factors that are affecting Aohan banner. The results indicated that: (1) After adding the terrain factors, the R2 and residual predictive deviation (RPD) of the RF model increased by 1.178 and 0.39%, with root mean square errors (RMSEs) of 1.42 g/kg and 1.05 g/kg, respectively; (2) The spatial distribution of SOC was higher in the south and lower in the north; the negative growth of SOC accounted for 55.923% of the total area, showing a trend of degradation; (3) Precipitation was the main driving factor of SOC spatial variation in the typical agro-pastoral ecotone of northern China, which was also affected by temperature, elevation, soil type and soil texture (p < 0.01). (4). Anthropogenic factors (carbon input and gross domestic product (GDP)) had a greater impact on SOC than did climate factors (temperature and precipitation), making anthropogenic factors the dominant factors affecting SOC temporal variation (p < 0.01). The results of this work constitute a basis for a regional assessment of the temporal evolution of organic carbon in the soil surface, which is a key tool for monitoring the sustainable development of agropastoral ecotones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.