Neuromorphic systems recently gained increasing attention for their high computation efficiency. Many designs have been proposed and realized with traditional CMOS technology or emerging devices. In this work, we proposed a spiking neuromorphic design built on resistive crossbar structures and implemented with IBM 130nm technology. Our design adopts a rate coding scheme where pre-and post-neuron signals are represented by digitalized pulses. The weighting function of pre-neuron signals is executed on the resistive crossbar in analog format. The computing result is transferred into digitalized output spikes via an integrate-and-fire circuit (IFC) as the postneuron. We calibrated the computation accuracy of the entire system through circuit simulations. The results demonstrated a good match to our analytic modeling. Furthermore, we implemented both feedforward and Hopfield networks by utilizing the proposed neuromorphic design. The system performance and robustness were studied through massive Monte-Carlo simulations based on the application of digital image recognition. Comparing to the previous crossbar-based computing engine that represents data with voltage amplitude, our design can achieve >50% energy savings, while the average probability of failed recognition increase only 1.46% and 5.99% in the feedforward and Hopfield implementations, respectively.
Following technology scaling, on-chip heterogeneous architecture emerges as a promising solution to combat the power wall of microprocessors. This work presents Harmonica-a framework of heterogeneous computing system enhanced by memristor-based neuromorphic computing accelerators (NCAs). In Harmonica, a conventional pipeline is augmented with a NCA which is designed to speedup artificial neural network (ANN) relevant executions by leveraging the extremely efficient mixed-signal computation capability of nanoscale memristor-based crossbar (MBC) arrays. With the help of a mixed-signal interconnection network (M-Net), the hierarchically arranged MBC arrays can accelerate the computation of a variety of ANNs. Moreover, an inline calibration scheme is proposed to ensure the computation accuracy degradation incurred by the memristor resistance shifting within an acceptable range during NCA executions. Compared to general-purpose processor, Harmonica can achieve on average 27.06× performance speedup and 25.23× energy savings when the NCA is configured with auto-associative memory (AAM) implementation. If the NCA is configured with multilayer perception (MLP) implementation, the performance speedup and energy savings can be boosted to 178.41× and 184.24×, respectively, with slightly degraded computation accuracy. Moreover, the performance and power efficiency of Harmonica are superior to the designs with either digital neural processing units (D-NPUs) or MBC arrays cooperating with a digital interconnection network. Compared to the baseline of general-purpose processor, the classification rate degradation of Harmonica in MLP or AAM is less than 8% or 4%, respectively. . His research interests include large-scale neuromorphic computing circuits and systems, highperformance computing architectures, energy-efficient embedded computing.Jianhua (Joshua) Yang (M'08) received the B.A. . He spent over 8 years at HP Labs before joining UMass in 2015. His current research interests are Nanoelectronics and Nanoionics, especially for unconventional computing applications, where he authored and co-authored over 100 papers in peer-reviewed academic journals and conferences, and holds 61 granted and over 70 pending US Patents.Hai (Helen) Li (M'08-SM'16) received the B.S. and M.S. degrees in microelectronics from Tsinghua University,
In implementations of neuromorphic computing systems (NCS), memristor and its crossbar topology have been widely used to realize fully connected neural networks. However, many neural networks utilized in real applications often have a sparse connectivity, which is hard to be efficiently mapped to a crossbar structure. Moreover, the scale of the neural networks is normally much larger than that can be offered by the latest integration technology of memristor crossbars. In this work, we propose AutoNCS -an EDA framework that can automate the NCS designs that combine memristor crossbars and discrete synapse modules. The connections of the neural networks are clustered to improve the utilization of the memristor elements in crossbar structures by taking into account the physical design cost of the NCS. Our results show that AutoNCS can substantially enhance the utilization efficiency of memristor crossbars while reducing the wirelength, area and delay of the physical designs of the NCS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.