The human epidermal growth factor receptor (HER) family of receptor tyrosine kinase has been extensively studied in breast cancer; however, systematic studies of EGFR gene amplification and protein overexpression in breast carcinoma are lacking. We studied EGFR gene amplification by chromogenic in situ hybridization (CISH) and protein expression by immunohistochemistry in 175 breast carcinomas, using tissue microarrays. Tumors with 45 EGFR gene copies per nucleus were interpreted as positive for gene amplification. Protein overexpression was scored according to standardized criteria originally developed for HER-2. EGFR mRNA levels, as measured by Affymetrix U133 Gene Chip microarray hybridization, were available in 63 of these tumors. HER-2 gene amplification by fluorescence in situ hybridization (FISH) and protein overexpression by immunohistochemistry were also studied. EGFR gene amplification (copy number range: 7-18; median: 12) was detected in 11/175 (6%) tumors, and protein overexpression was found in 13/175 (7%) tumors. Of the 11 tumors, 10 (91%) with gene amplification also showed EGFR protein overexpression (2 þ or 3 þ by immunohistochemistry). The EGFR mRNA level, based on Affymetrix U133 chip hybridization data, was increased relative to other breast cancer samples in three of the five tumors showing gene amplification. Exons 19 and 21 of EGFR, the sites of hotspot mutations in lung adenocarcinomas, were screened in the 11 EGFR-amplified tumors but no mutations were found. Three of these 11 tumors also showed HER-2 overexpression and gene amplification. Approximately 6% of breast carcinomas show EGFR amplification with EGFR protein overexpression and may be candidates for trials of EGFR-targeted antibodies or small inhibitory molecules.
Chronic myelogenous leukemia (CML) is a clonal myeloproliferative disorder that is characterized by the presence of a reciprocal translocation between chromosomes 9 and 22 and results in the formation of the Philadelphia (Ph1) chromosome and is present in most of CML patients. The Ph1 chromosome forms a chimeric gene that encodes an abnormal P210 mRNA transcript in most CML patients. Surveillance for minimal residual disease by detection of BCR/ABL transcripts is currently done mostly by quantitative real-time reverse transcriptase polymerase chain reaction (RT-PCR). Quantitation of BCR/ABL transcripts can monitor tumor load and the outcome of therapy. Absolute quantification determines the input copy number of the transcript of interest, usually by plotting the amount of PCR product onto a standard curve based on serial dilutions of the same product cloned in plasmids. Relative quantification describes the change in expression of the target gene in the patient sample relative to that of a control transcript by using the 2-DeltaDeltaCt calculation. The results of real-time RT-PCR for BCR/ABL transcripts are often analyzed by using plasmid DNA standard curves. In the present study, 79 BCR/ABL transcript-positive samples from CML patients who were being monitored for minimal residual disease by real-time quantitative RT-PCR were studied to determine whether the 2-DeltaDeltaCt approach was equivalent to the plasmid standard curve method. BCR/ABL P210 transcripts were quantitated using both the plasmid standard curve method and the 2-DeltaDeltaCt calculation. The comparison of both methods revealed a highly significant and linear correlation between the plasmid standard curve method and the 2-DeltaDeltaCt calculation (R2=0.98, P<0.0001). Furthermore, there was a reduction of preparation time, contamination risk, and reagent usage. The 2-DeltaDeltaCt calculation is a convenient alternative method to derive accurate quantitative information from real time PCR assays.
A B S T R A C TPurpose NCCTG (North Central Cancer Treatment Group) N9831 is the only randomized phase III trial evaluating trastuzumab added sequentially or used concurrently with chemotherapy in resected stages I to III invasive human epidermal growth factor receptor 2-positive breast cancer. Patients and MethodsPatients received doxorubicin and cyclophosphamide every 3 weeks for four cycles, followed by paclitaxel weekly for 12 weeks (arm A), paclitaxel plus sequential trastuzumab weekly for 52 weeks (arm B), or paclitaxel plus concurrent trastuzumab for 12 weeks followed by trastuzumab for 40 weeks (arm C). The primary end point was disease-free survival (DFS). ResultsComparison of arm A (n ϭ 1,087) and arm B (n ϭ 1,097), with 6-year median follow-up and 390 events, revealed 5-year DFS rates of 71.8% and 80.1%, respectively. DFS was significantly increased with trastuzumab added sequentially to paclitaxel (log-rank P Ͻ .001; arm B/arm A hazard ratio [HR], 0.69; 95% CI, 0.57 to 0.85). Comparison of arm B (n ϭ 954) and arm C (n ϭ 949), with 6-year median follow-up and 313 events, revealed 5-year DFS rates of 80.1% and 84.4%, respectively. There was an increase in DFS with concurrent trastuzumab and paclitaxel relative to sequential administration (arm C/arm B HR, 0.77; 99.9% CI, 0.53 to 1.11), but the P value (.02) did not cross the prespecified O'Brien-Fleming boundary (.00116) for the interim analysis. ConclusionDFS was significantly improved with 52 weeks of trastuzumab added to adjuvant chemotherapy. On the basis of a positive risk-benefit ratio, we recommend that trastuzumab be incorporated into a concurrent regimen with taxane chemotherapy as an important standard-of-care treatment alternative to a sequential regimen.
Purpose To develop a genomic signature that predicts benefit from trastuzumab in human epidermal growth factor receptor 2–positive breast cancer. Patients and Methods DASL technology was used to quantify mRNA in samples from 1,282 patients enrolled onto the Combination Chemotherapy With or Without Trastuzumab in Treating Women With Breast Cancer (North Central Cancer Treatment Group N9831 [NCCTG-N9831]) adjuvant trastuzumab trial. Cox proportional hazard ratios (HRs), adjusted for significant clinicopathologic risk factors, were used to determine the association of each gene with relapse-free survival (RFS) for 433 patients who received chemotherapy alone (arm A) and 849 patients who received chemotherapy plus trastuzumab (arms B and C). Network and pathway analyses were used to identify key biologic processes linked to RFS. The signature was built by using a voting scheme. Results Network and functional ontology analyses suggested that increased RFS was linked to a subset of immune function genes. A voting scheme model was used to define immune gene enrichment based on the expression of any nine or more of 14 immune function genes at or above the 0.40 quantile for the population. This model was used to identify immune gene–enriched tumors in arm A and arms B and C. Immune gene enrichment was linked to increased RFS in arms B and C (HR, 0.35; 95% CI, 0.22 to 0.55; P < .001), whereas arm B and C patients who did not exhibit immune gene enrichment did not benefit from trastuzumab (HR, 0.89; 95% CI, 0.62 to 1.28; P = .53). Enriched immune function gene expression as defined by our predictive signature was not associated with increased RFS in arm A (HR, 0.90; 95% CI, 0.60 to 1.37; P = .64). Conclusion Increased expression of a subset of immune function genes may provide a means of predicting benefit from adjuvant trastuzumab.
Breast cancer is the most common malignancy in women in the United States in the year 2000. The proto-oncogene Her-2/neu (c-erb-B2) has become an increasingly important prognostic and predictive factor in breast cancer. Overexpression/amplification of the Her-2/neu has been associated with a worse outcome in patients with breast cancer. Herceptin, a "humanized" murine monoclonal antibody directed against the extracellular domain of the Her-2/neu protein, is being used to treat breast cancer that overexpresses Her-2/neu. The status of Her-2/neu in the tumor has become a critical factor in the management strategy of a breast cancer patient. The objective of this article is to provide a comprehensive review of all aspects of Her-2/neu in breast cancer, including biology, prognostic and predictive value, targeted Herceptin therapy, and the laboratory testing of Her-2/neu.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.