The consumption of rice has become a global food safety issue because rice paddies support the production of high levels of the potent neurotoxin, methylmercury. The production of methylmercury is carried out by chemotrophic anaerobes that rely on a diversity of terminal electron acceptors, namely sulphate. Sulphur can be a limiting nutrient in rice paddies, and sulphate amendments are often used to stimulate crop production, which can increase methylmercury production. Mercury (Hg) redox cycling can affect Hg methylation by controlling the delivery of inorganic Hg substrates to methylators in anoxic habitats. Whereas sulphur is recognized as a key substrate controlling methylmercury production, the controls sulphur exerts on other microbe‐mediated Hg transformations remain poorly understood. To explore the potential coupling between sulphur assimilation and anaerobic HgII reduction to Hg0, we studied Heliobacillus mobilis, a mesophilic anoxygenic phototroph representative from the Heliobacteriacea family originally isolated from a rice paddy. Here, we tested whether the redox state of the sulphur sources available to H. mobilis would affect its ability to reduce HgII. By comparing Hg0 production over a redox gradient of sulphur sources, we demonstrate that phototrophic HgII reduction is favoured in the presence of reduced sulphur sources such as thiosulphate and cysteine. We also show that cysteine exerts dynamic control on Hg cycling by affecting not only Hg's bioavailability but also its abiotic photoreduction under low light conditions. Specifically, in the absence of cells we show that organic matter (as yeast extract) and cysteine are both required for photoreduction to occur. This study offers insights into how one of the most primitive forms of photosynthesis affects Hg redox transformations and frames Heliobacteria as key players in Hg cycling within paddy soils, forming a basis for management strategies to mitigate Hg accumulation in rice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.