Pulsed laser deposition (PLD) is a versatile thin film deposition technique in which high powered laser beam interacts with a target material inside an ultrahigh vacuum chamber. Highly energetic particles such as electrons, atoms, protons, and ions generate a plasma plume that directed towards a substrate material where recondenses form a thin film. PLD is an effective and reliable method to create varieties of thin films such as metal, polymer, and ceramic for many technologically essential applications. In this study, thin Pb films were grown by pulsed laser deposition on Si (111) at various laser fluences, pulse wavelengths, deposition times, and substrate temperatures. Nanosecond pulsed Nd: YAG laser with 1064 nm fundamental wavelength, 10 Hz frequency, and 5 ns pulse duration used to ablate the 99.99% pure Pb material. Scanning electron microscopy (SEM) and ex situ atomic force microscopy (AFM) were used to probe the surface morphology and structure. At room temperature, increasing the laser fluence and/or the pulse wavelength triggers the transformation from the "worm"-like interconnected islands to granular, separated islands. Increasing the substrate temperature to slightly below the Pb melting temperature results in the formation of large, nearly spherical non-wetting islands. Additionally, ultrathin Pb (111) films were grown at room temperature, which resulted in the appearance of a small number of almost 2D islands due vii to the emerging quantum size effect. Our results show that pulsed laser deposition can be used effectively for the controlled growth of Pb thin films.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.