Background E-science technologies have significantly increased the availability of data. Research grant providers such as the European Union increasingly require open access publishing of research results and data. However, despite its significance to research, the adoption rate of open data technology remains low across all disciplines, especially in Europe where research has primarily focused on technical solutions (such as Zenodo or the Open Science Framework) or considered only parts of the issue. Methods and findings In this study, we emphasized the non-technical factors perceived value and uncertainty factors in the context of academia, which impact researchers' acceptance of open data-the idea that researchers should not only publish their findings in the form of articles or reports, but also share the corresponding raw data sets. We present the results of a broad quantitative analysis including N = 995 researchers from 13 large to medium-sized universities in Germany. In order to test 11 hypotheses regarding researchers' intentions to share their data, as well as detect any hierarchical or disciplinary differences, we employed a structured equation model (SEM) following the partial least squares (PLS) modeling approach. Conclusions Grounded in the value-based theory, this article proclaims that most individuals in academia embrace open data when the perceived advantages outweigh the disadvantages. Furthermore, uncertainty factors impact the perceived value (consisting of the perceived advantages and disadvantages) of sharing research data. We found that researchers' assumptions about effort required during the data preparation process were diminished by awareness of e-science technologies (such as Zenodo or the Open Science Framework), which also increased their tendency to perceive personal benefits via data exchange.
One of the most fundamental challenges when accessing gestural patterns in 3D motion capture databases is the definition of spatiotemporal similarity. While distance-based similarity models such as the Gesture Matching Distance on gesture signatures are able to leverage the spatial and temporal characteristics of gestural patterns, their applicability to large 3D motion capture databases is limited due to their high computational complexity. To this end, we present a lower bound approximation of the Gesture Matching Distance that can be utilized in an optimal multi-step query processing architecture in order to support efficient query processing. We investigate the performance in terms of accuracy and efficiency based on 3D motion capture databases and show that our approach is able to achieve an increase in efficiency of more than one order of magnitude with a negligible loss in accuracy. In addition, we discuss different applications in the digital humanities in order to highlight the significance of similarity search approaches in the research field of gestural pattern analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.