Benign paroxysmal positional vertigo is a common cause of disabling vertigo with a high rate of recurrence. Although connections between vitamin D deficiency and osteoporosis, as well as between osteoporosis and benign paroxysmal positional vertigo have been suggested respectively in the literature, we are not aware of any publication linking vitamin D and benign paroxysmal positional vertigo. As a hypothesis, we suggest that there is a relation between insufficient vitamin D level and benign paroxysmal positional vertigo. In order to test this hypothesis, in a small retrospective pilot study, 25-hydroxyvitamin D levels in serum of patients with benign paroxysmal positional vertigo and frequency of recurrence after correction of serum level were assessed retrospectively. Patients with idiopathic positional vertigo had a low average serum level of 25-hydroxyvitamin D (23 ng/mL) similar to that of the general Austrian population, which has a high prevalence of hypovitaminosis D. In 4 cases with chronically recurrent severe vertigo episodes, average levels of serum 25-hydroxyvitamin D were even significantly lower than in the other vertigo patients, who had their first episode. Vertigo attacks did not recur after supplementation with vitamin D. We raise the possibility that patients with benign paroxysmal positional vertigo who have low vitamin D levels may benefit from supplementation and suggest further epidemiological investigations to determine the effect of correcting vitamin D deficiency on the recurrence of vertigo. Given the many known benefits of vitamin D, the authors recommend the measurement of vitamin D in patients with benign paroxysmal positional vertigo and supplementation if necessary.
An essential task for the central auditory pathways is to parse the auditory messages sent by the two cochleae into auditory objects, the segregation and localisation of which constitute an important means of separating target signals from noise and competing sources. When hearing losses are too asymmetric, the patients face a situation in which the monaural exploitation of sound messages significantly lessens their performance compared to what it should be in a binaural situation. Rehabilitation procedures must aim at restoring as many binaural advantages as possible. These advantages encompass binaural redundancy, head shadow effect and binaural release from masking, the principles and requirements of which make up the topic of this short review. Notwithstanding the complete understanding of their neuronal mechanisms, empirical data show that binaural advantages can be restored even in situations in which faultless symmetry is inaccessible.
To enhance weak sounds while compressing the dynamic intensity range, auditory sensory cells amplify sound-induced vibrations in a nonlinear, intensity-dependent manner. In the course of this process, instantaneous waveform distortion is produced, with two conspicuous kinds of interwoven consequences, the introduction of new sound frequencies absent from the original stimuli, which are audible and detectable in the ear canal as otoacoustic emissions, and the possibility for an interfering sound to suppress the response to a probe tone, thereby enhancing contrast among frequency components. We review how the diverse manifestations of auditory nonlinearity originate in the gating principle of their mechanoelectrical transduction channels; how they depend on the coordinated opening of these ion channels ensured by connecting elements; and their links to the dynamic behavior of auditory sensory cells. This paper also reviews how the complex properties of waves traveling through the cochlea shape the manifestations of auditory nonlinearity. Examination methods based on the detection of distortions open noninvasive windows on the modes of activity of mechanosensitive structures in auditory sensory cells and on the distribution of sites of nonlinearity along the cochlear tonotopic axis, helpful for deciphering cochlear molecular physiology in hearing-impaired animal models. Otoacoustic emissions enable fast tests of peripheral sound processing in patients. The study of auditory distortions also contributes to the understanding of the perception of complex sounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.