We investigated the effect of diazoxide on neuronal survival in primary cultures of rat cortical neurons against oxygenglucose deprivation (OGD). Diazoxide pre-treatment induced delayed pre-conditioning and almost entirely attenuated the OGD-induced neuronal death. Diazoxide inhibited succinate dehydrogenase and induced mitochondrial depolarization, free radical production and protein kinase C activation. The putative mitochondrial ATP-sensitive potassium channel blocker 5-hydroxydecanoate abolished the protective effect of diazoxide while the non-selective K ATP channel blocker glibenclamide did not. The non-selective K ATP channel openers nicorandil and cromakalim did not improve viability. Superoxide dismutase mimetic, M40401, or protein kinase C inhibitor, chelerythrine, prevented the neuroprotective effect of diazoxide. Diazoxide did not increase reduced glutathione and manganese-superoxide dismutase levels but we found significantly higher reduced glutathione levels in diazoxidepre-conditioned neurons after OGD. In pre-conditioned neurons free radical production was reduced upon glutamate stimulation. The succinate dehydrogenase inhibitor 3-nitropropionic acid also induced pre-conditioning and free radical production in neurons. Here, we provide the first evidence that diazoxide induces delayed pre-conditioning in neurons via acute generation of superoxide anion and activation of protein kinases and subsequent attenuation of oxidant stress following OGD. The succinate dehydrogenase-inhibiting effect of diazoxide is more likely to be involved in this neuroprotection than the opening of mitochondrial ATP-sensitive potassium channels.
Cyclooxygenase (COX)-3, a novel COX splice variant, was suggested as the key to unlocking the mystery of the mechanism of action of acetaminophen. Although COX-3 might have COX activity in canines, and this activity might be inhibited by acetaminophen, its low expression level and the kinetics indicate unlikely clinical relevance. In rodents and humans, COX-3 encodes proteins with completely different amino acid sequences than COX
We investigated the mechanism of EDHF-mediated dilation to bradykinin (BK) in piglet pial arteries. Topically applied BK (3 micromol/l) induced vasodilation (62 +/- 12%) after the administration of N(omega)-nitro-L-arginine methyl ester (L-NAME) and indomethacin, which was inhibited by endothelial impairment or by the BK(2) receptor antagonist HOE-140 (0.3 micromol/l). Western blotting showed the presence of BK(2) receptors in brain cortex and pial vascular tissue samples. The cytochrome P-450 antagonist miconazole (20 micromol/l) and the lipoxygenase inhibitors baicalein (10 micromol/l) and cinnamyl-3,4-dyhydroxy-alpha-cyanocinnamate (1 micromol/l) failed to reduce the BK-induced dilation. However, the H(2)O(2) scavenger catalase (400 U/ml) abolished the response (from 54 +/- 11 to 0 +/- 2 microm; P < 0.01). The ATP-dependent K(+) (K(ATP)) channel inhibitor glibenclamide (10 micromol/l) had a similar effect as well (from 54 +/- 11 to 16 +/- 5 microm; P < 0.05). Coapplication of the Ca(2+)-dependent K(+) channel inhibitors charybdotoxin (0.1 micromol/l) and apamin (0.5 micromol/l) failed to reduce the response. We conclude that H(2)O(2) mediates the non-nitric oxide-, non-prostanoid-dependent vasorelaxation to BK in the piglet pial vasculature. The response is mediated via BK(2) receptors and the opening of K(ATP) channels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.