This study is aimed at utilizing brewery’s spent grain (BSG) byproduct for the synthesis of cellulose nanocrystals (CNCs) using acid hydrolysis and optimizing the hydrolysis parameters (hydrolysis time, temperature, liquid-solid ratio, and acid concentration). Alkali and bleaching treatment were done to remove hemicellulose and lignin from BSG. Optimization process was performed using central composite design (CCD) to obtain optimum value of cellulose nanocrystal (CNC) yield. The maximum cellulose nanocrystal (CNC) yield of 43.24% was obtained at optimum hydrolysis conditions of 50°C, 51 wt% acid concentration, 41 min, and liquid-solid ratio of 19 ml/g. The raw brewery spent grain; alkali-treated fiber, bleached fiber, and obtained CNC were characterized using scanning electron microscopy (SEM), XRD, particle analyzer, FTIR, and differential scanning calorimeter (DSC). The characterization results indicated that the obtained cellulose nanocrystal (CNC) has rod-like whisker shape with crystallinity of 76.3% and an average particle size of 309.4 nm.
This study has investigated ultrasound-assisted xylitol production through fermentation of dilute acid (pentose-rich) hydrolysate of sugarcane bagasse using free cells of Candida tropicalis. Sonication of fermentation mixture at optimum conditions was carried out in ultrasound bath (37 kHz and 10% duty cycle). Time profiles of substrate and product in control (mechanical shaking) and test (mechanical shaking + sonication) fermentations were fitted to kinetic model using Genetic Algorithm (GA) optimization. Max. xylitol yield of 0.56 g/g and 0.61 g/g of xylose was achieved in control and test fermentations, respectively. The biomass yield also increased marginally (∼17%) with sonication. However, kinetics of fermentation increased drastically (2.5×) with sonication with 2× rise in xylose uptake and utilization by the cells. With comparative analysis of kinetic parameters in control and test experiments, this result was attributed to enhanced permeability of cell membrane that allowed faster diffusion of nutrients, substrates and products across cell membrane, higher enzyme-substrate affinity, dilution of toxic components and reduced inhibition of intracellular enzymes by substrate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.