This paper presents the outcome of the development, optimisation and validation at European Union level of an analytical method for using poly(2,6-diphenyl phenylene oxide--PPPO), which is stipulated in Regulation (EU) No. 10/2011, as food simulant E for testing specific migration from plastics into dry foodstuffs. Two methods for fortifying respectively PPPO and a low-density polyethylene (LDPE) film with surrogate substances that are relevant to food contact were developed. A protocol for cleaning the PPPO and an efficient analytical method were developed for the quantification of butylhydroxytoluene (BHT), benzophenone (BP), diisobutylphthalate (DiBP), bis(2-ethylhexyl) adipate (DEHA) and 1,2-cyclohexanedicarboxylic acid, diisononyl ester (DINCH) from PPPO. A protocol for a migration test from plastics using small migration cells was also developed. The method was validated by an inter-laboratory comparison (ILC) with 16 national reference laboratories for food contact materials in the European Union. This allowed for the first time data to be obtained on the precision and laboratory performance of both migration and quantification. The results showed that the validation ILC was successful even when taking into account the complexity of the exercise. The results showed that the method performance was 7-9% repeatability standard deviation (rSD) for most substances (regardless of concentration), with 12% rSD for the high level of BHT and for DiBP at very low levels. The reproducibility standard deviation results for the 16 European Union laboratories were in the range of 20-30% for the quantification from PPPO (for the three levels of concentrations of the five substances) and 15-40% from migration experiments from the fortified plastic at 60°C for 10 days and subsequent quantification. Considering the lack of data previously available in the literature, this work has demonstrated that the validation of a method is possible both for migration from a film and for quantification into a corresponding simulant for specific migration.
The study provides an exhaustive set of migration data for octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate (Irganox 1076) from low-density polyethylene (LDPE) in several food matrices. Irganox 1076 was used as a model migrant because it represents one of the typical substances used as an antioxidant in food packaging polymers. Kinetic (time-dependent) migration studies of Irganox 1076 were performed for selected foodstuffs chosen with different physical-chemical properties and in relation to the actual European food consumption market. The effect of fat content and of the temperature of storage on the migration from plastic packaging was evaluated. The results show that migration increased with fat content and storage temperature. All data obtained from real foods were also compared with data obtained from simulants tested in the same conditions. In all studied cases, the kinetics in simulants were higher than those in foodstuffs. The work provides data valuable for the extension of the validation of migration model developed on simulants to foodstuffs themselves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.