BackgroundComprehensive biotic surveys, or ‘all taxon biodiversity inventories’ (ATBI), have traditionally been limited in scale or scope due to the complications surrounding specimen sorting and species identification. To circumvent these issues, several ATBI projects have successfully integrated DNA barcoding into their identification procedures and witnessed acceleration in their surveys and subsequent increase in project scope and scale. The Biodiversity Institute of Ontario partnered with the rare Charitable Research Reserve and delegates of the 6th International Barcode of Life Conference to complete its own rapid, barcode-assisted ATBI of an established land trust in Cambridge, Ontario, Canada.New informationThe existing species inventory for the rare Charitable Research Reserve was rapidly expanded by integrating a DNA barcoding workflow with two surveying strategies – a comprehensive sampling scheme over four months, followed by a one-day bioblitz involving international taxonomic experts. The two surveys resulted in 25,287 and 3,502 specimens barcoded, respectively, as well as 127 human observations. This barcoded material, all vouchered at the Biodiversity Institute of Ontario collection, covers 14 phyla, 29 classes, 117 orders, and 531 families of animals, plants, fungi, and lichens. Overall, the ATBI documented 1,102 new species records for the nature reserve, expanding the existing long-term inventory by 49%. In addition, 2,793 distinct Barcode Index Numbers (BINs) were assigned to genus or higher level taxonomy, and represent additional species that will be added once their taxonomy is resolved. For the 3,502 specimens, the collection, sequence analysis, taxonomic assignment, data release and manuscript submission by 100+ co-authors all occurred in less than one week. This demonstrates the speed at which barcode-assisted inventories can be completed and the utility that barcoding provides in minimizing and guiding valuable taxonomic specialist time. The final product is more than a comprehensive biotic inventory – it is also a rich dataset of fine-scale occurrence and sequence data, all archived and cross-linked in the major biodiversity data repositories. This model of rapid generation and dissemination of essential biodiversity data could be followed to conduct regional assessments of biodiversity status and change, and potentially be employed for evaluating progress towards the Aichi Targets of the Strategic Plan for Biodiversity 2011–2020.
Along many decades, protected environments were targeted by the scientific community for ecological research and for the collection of scientific information related to environmental aspects and biodiversity. However, most of the territory in hotspot regions with weak or even non legal protection has been left aside. These non-protected areas (NPA) could host high biodiversity values. This paper addresses how scientific effort on a NPA (CIAR) of 700 ha from the Atlantic Rain Forest, generates new information and tools for large-scale environmental and biodiversity management in NPAs. Information published during the last decade was summarized and complemented with subsequent novel data about biodiversity (new species, first records, DNA and chemical analyses, etc.). The results showed: 1 new genus (arachnid), 6 new species and several putative new species (fish and arthropod), 6 vulnerable species (bird and mammal) and 36 first records for Argentina (fish, arthropod, platyhelminth and fungi). When compared with protected natural areas of the same biome, the CIAR showed highly valuable aspects for fauna and environment conservation, positioning this NPA as a worldwide hotspot for some taxa. Indeed, when compared to international hotspots in a coordinated Malaise trap program, the CIAR showed 8,651 different barcode index numbers (~species) of arthropods, 80% of which had not been previously barcoded. Molecules like Inoscavin A, with antifungal activity against phytopathogens, was isolated for the first time in Phellinus merrillii fungi. The study of major threats derived from anthropic activities measured 20 trace elements, 18 pesticides (i.e. endosulfans, chlorpyrifos, DDTs, HCHs) and 27 pharmaceuticals and drugs (i.e. benzoylecgonine and norfluoxetine) in different biotic and abiotic matrices (water, sediment, fish and air biomonitors). This integrated data analysis shows that biodiversity research in NPA is being undervalued and how multidisciplinary and multitaxa surveys creates a new arena for research and a pathway towards sustainable development in emerging countries with biodiversity hotspots.
The Atlantic Forest harbors 7% of global biodiversity and possesses high levels of endemism, but many of its component taxa remain unstudied. Due to the importance of tropical forests and the urgency to protect them, there is a compelling need to address this knowledge gap. To provide more information on its arthropod fauna, a Malaise trap was deployed for 12 months in a semi-degraded area of the southern Upper Paraná ecoregion of the Atlantic Forest. All specimens were DNA barcoded and the Barcode Index Number (BIN) system was employed to assign each specimen to a species proxy. DNA barcodes were obtained from 75,500 arthropods that included representatives of 8,651 BINs. Nearly 81% of these BINs were first records, highlighting the high rates of endemism and lack of study of arthropods from the Atlantic Forest. Diptera was the most abundant order, followed by Hemiptera, Lepidoptera and Hymenoptera. Diptera was also the most species-rich order, followed by Hymenoptera, Lepidoptera, and Coleoptera, a result consistent with studies in other biogeographic regions. Insects were most abundant in winter and most diverse in autumn and winter. This pattern, however, was caused mainly by the dynamics of dipteran diversity as other orders differed in their seasonal variation. The BIN composition of the insect community varied sharply through the year and also differed between the two consecutive summers included in the sampling period. The study of the 38 commonest BINs showed that seasonal patterns of abundance were not order-specific. Temperature had the strongest impact on seasonal abundance variation. Our results highlight the striking and understudied arthropod diversity of the highly fragmented Atlantic Forest, the predominance of dipterans, and the fact that abundance and richness in this insect community peak in the coolest months. Standardized studies like this generate fast and reliable biodiversity inventories and unveil ecological patterns, thus providing valuable information for conservation programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.