The purpose of a Network Intrusion Detection System is to detect intrusive, malicious activities or policy violations in a host or host’s network. In current networks, such systems are becoming more important as the number and variety of attacks increase along with the volume and sensitiveness of the information exchanged. This is of particular interest to Internet of Things networks, where an intrusion detection system will be critical as its economic importance continues to grow, making it the focus of future intrusion attacks. In this work, we propose a new network intrusion detection method that is appropriate for an Internet of Things network. The proposed method is based on a conditional variational autoencoder with a specific architecture that integrates the intrusion labels inside the decoder layers. The proposed method is less complex than other unsupervised methods based on a variational autoencoder and it provides better classification results than other familiar classifiers. More important, the method can perform feature reconstruction, that is, it is able to recover missing features from incomplete training datasets. We demonstrate that the reconstruction accuracy is very high, even for categorical features with a high number of distinct values. This work is unique in the network intrusion detection field, presenting the first application of a conditional variational autoencoder and providing the first algorithm to perform feature recovery.
Recent technological advances in the Power Generation and Information Technologies areas are helping to change the modern electricity supply system, in order to comply with higher energy efficiency and sustainability standards. Smart Grids are an emerging trend which introduces intelligence in the power grid to optimize resource usage. In order for this intelligence to be effective, it is necessary to retrieve enough information about the grid operation together with other context data such as environmental variables and intelligently modify the behaviour of the network elements accordingly. This paper presents a Multi-Agent System model for Virtual Power Plants, a new power plant concept in which generation no longer occurs in big installations, but is the result of the cooperation of smaller and more intelligent elements. The proposed model is not only focused on the management of the different elements, but includes a set of agents which are embedded with Artificial Neural Networks for collaborative forecasting of disaggregated energy demand of domestic end users, the results of which are also shown in this paper.
Received : 28 November 2012; in revised form: 18 February 2013 / Accepted: 20 February 2013 / Published: 5 March 2013 Abstract: Electricity is indispensable and of strategic importance to national economies. Consequently, electric utilities make an effort to balance power generation and demand in order to offer a good service at a competitive price. For this purpose, these utilities need electric load forecasts to be as accurate as possible. However, electric load depends on many factors (day of the week, month of the year, etc.), which makes load forecasting quite a complex process requiring something other than statistical methods. This study presents an electric load forecast architectural model based on an Artificial Neural Network (ANN) that performs Short-Term Load Forecasting (STLF). In this study, we present the excellent results obtained, and highlight the simplicity of the proposed model. Load forecasting was performed in a geographic location of the size of a potential microgrid, as microgrids appear to be the future of electric power supply.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.