The overall increase of chronic degenerative diseases associated with ageing makes wound care a tremendous socioeconomic burden. Thus, there is a growing need to develop novel wound healing therapies to improve cutaneous wound healing. The use of regenerative therapies is becoming increasingly popular due to the low-invasive procedures needed to apply them. Platelet-rich plasma (PRP) is gaining interest due to its potential to stimulate and accelerate the wound healing process. The cytokines and growth factors forming PRP play a crucial role in the healing process. This article reviews the emerging field of skin wound regenerative therapies with particular emphasis on PRP and the role of growth factors in the wound healing process.
Purpose: The aim of this study was to compare the efficacy and safety of a single intra-articular injection of adipose mesenchymal stem cells (aMSCs) versus plasma rich in growth factors (PRGF) as a treatment for reducing symptoms in dogs with hip osteoarthritis (OA). Methods: This was a randomized, multicenter, blinded, parallel group. Thirty-nine dogs with symptomatic hip OA were assigned to one of the two groups, to receive aMSCs or PRGF. The primary outcome measures were pain and function subscales, including radiologic assessment, functional limitation and joint mobility. The secondary outcome measures were owners’ satisfaction questionnaire, rescue analgesic requirement and overall safety. Data was collected at baseline, then, 1, 3 and 6 months post-treatment. Results: OA degree did not vary within groups. Functional limitation, range of motion (ROM), owner’s and veterinary investigator visual analogue scale (VAS), and patient’s quality of life improved from the first month up to six months. The aMSCs group obtained better results at 6 months. There were no adverse effects during the study. Our findings show that aMSCs and PRGF are safe and effective in the functional analysis at 1, 3 and 6 months; provide a significant improvement, reducing dog’s pain, and improving physical function. With respect to basal levels for every parameter in patients with hip OA, aMSCs showed better results at 6 months.
BackgroundRegenerative medicine using Mesenchymal Stem Cells (MSC) alone or combined with Plasma Rich in Growth Factors (PRGF) is a rapidly growing area of clinical research and is currently also being used to treat osteoarthritis (OA). Force platform analysis has been consistently used to verify and quantify the efficacy of different therapeutic strategies for the treatment of OA in dogs including MSC associated to PRGF, but never with AD-MSC alone.The aim of this study was to use a force platform to measure the efficacy of intraarticular ADMSC administration for limb function improvement in dogs with severe OA.ResultsTen lame dogs with severe hip OA and a control group of 5 sound dogs were used for this study. Results were statistically analyzed to detect a significant increase in peak vertical force (PVF) and vertical impulse (VI) in treated dogs. Mean values of PVF and VI were significantly improved within the first three months post-treatment in the OA group, increasing 9% and 2.5% body weight, respectively, at day 30. After this, the effect seems to decrease reaching initial values.ConclusionIntraarticular ADMSC therapy objectively improved limb function in dogs with hip OA. The duration of maximal effect was less than 3 months.
BackgroundAdipose-derived mesenchymal stem cell (ADMSC) therapy in regenerative medicine is a rapidly growing area of research and is currently also being used to treat osteoarthritis (OA). Force platform analysis has been consistently used to verify the efficacy of different therapeutic strategies for the treatment of OA in dogs, but never with AD-MSC.The aim of this study was to use a force platform to measure the efficacy of intraarticular ADMSC administration for limb function improvement in dogs with severe OA.ResultsEight lame dogs with severe hip OA and a control group of 5 sound dogs were used for this study. Results were statistically analyzed to detect a significant increase in peak vertical force (PVF) and vertical impulse (VI) in treated dogs. Mean values of PVF and VI were significantly improved after treatment of the OA groups, reaching 53.02% and 14.84% of body weight, respectively, at day 180, compared with only 43.56% and 12.16% at day 0.ConclusionThis study objectively demonstrated that intraarticular ADMSC therapy resulted in reduced lameness due to OA.
Chronic musculoskeletal (MSK) pain is one of the most common medical complaints worldwide and musculoskeletal injuries have an enormous social and economical impact. Current pharmacological and surgical treatments aim to relief pain and restore function; however, unsatiscactory outcomes are commonly reported. In order to find an accurate treatment to such pathologies, over the last years, there has been a significantly increasing interest in cellular therapies, such as adipose-derived mesenchymal stem cells (AMSCs). These cells represent a relatively new strategy in regenerative medicine, with many potential applications, especially regarding MSK disorders, and preclinical and clinical studies have demonstrated their efficacy in muscle, tendon, bone and cartilage regeneration. Nevertheless, several worries about their safety and side effects at long-term remain unsolved. This article aims to review the current state of AMSCs therapy in the treatment of several MSK diseases and their clinical applications in veterinary and human medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.