Axonal damage has been associated with aberrant protein trafficking. This study characterizes a novel class of compounds targeting nucleo-cytoplasmic shuttling, by binding to the catalytic groove of the nuclear export protein XPO1/CRM1 (chromosome region maintenance protein1). Oral administration of novel reversible CRM1 inhibitors in preclinical murine models of demyelination significantly attenuated disease progression, even when started after the onset of paralysis. Clinical efficacy was associated with decreased proliferation of immune cells, characterized by nuclear accumulation of cell cycle inhibitors, and preservation of cytoskeletal integrity even in demyelinated axons. Neuroprotection was not limited to models of demyelination, but observed also in other mouse models of axonal damage (i.e. kainic acid injection) and detected in cultured neurons after knockdown of Xpo1, the gene encoding for CRM1. A proteomic screen for target molecules revealed that CRM1 inhibitors in neurons prevented nuclear export of molecules associated with axonal damage while retaining transcription factors modulating neuroprotection.
Background and aimSeveral studies have highlighted the association of the 12q13.3–12q14.1 region with coeliac disease, type 1 diabetes, rheumatoid arthritis and multiple sclerosis (MS); however, the causal variants underlying diseases are still unclear. The authors sought to identify the functional variant of this region associated with MS.MethodsTag-single nucleotide polymorphism (SNP) analysis of the associated region encoding 15 genes was performed in 2876 MS patients and 2910 healthy Caucasian controls together with expression regulation analyses.Resultsrs6581155, which tagged 18 variants within a region where 9 genes map, was sufficient to model the association. This SNP was in total linkage disequilibrium (LD) with other polymorphisms that associated with the expression levels of FAM119B, AVIL, TSFM, TSPAN31 and CYP27B1 genes in different expression quantitative trait loci studies. Functional annotations from Encyclopedia of DNA Elements (ENCODE) showed that six out of these rs6581155-tagged-SNPs were located in regions with regulatory potential and only one of them, rs10877013, exhibited allele-dependent (ratio A/G=9.5-fold) and orientation-dependent (forward/reverse=2.7-fold) enhancer activity as determined by luciferase reporter assays. This enhancer is located in a region where a long-range chromatin interaction among the promoters and promoter-enhancer of several genes has been described, possibly affecting their expression simultaneously.ConclusionsThis study determines a functional variant which alters the enhancer activity of a regulatory element in the locus affecting the expression of several genes and explains the association of the 12q13.3–12q14.1 region with MS.
BackgroundMultiple Sclerosis (MS) is an autoimmune demyelinating disease that occurs more frequently in women than in men. Multiple Sclerosis Associated Retrovirus (MSRV) is a member of HERV-W, a multicopy human endogenous retroviral family repeatedly implicated in MS pathogenesis. MSRV envelope protein is elevated in the serum of MS patients and induces inflammation and demyelination but, in spite of this pathogenic potential, its exact genomic origin and mechanism of generation are unknown. A possible link between the HERV-W copy on chromosome Xq22.3, that contains an almost complete open reading frame, and the gender differential prevalence in MS has been suggested.ResultsMSRV transcription levels were higher in MS patients than in controls (U-Mann–Whitney; p = 0.004). Also, they were associated with the clinical forms (Spearman; p = 0.0003) and with the Multiple Sclerosis Severity Score (MSSS) (Spearman; p = 0.016). By mapping a 3 kb region in Xq22.3, including the HERV-W locus, we identified three polymorphisms: rs6622139 (T/C), rs6622140 (G/A) and rs1290413 (G/A). After genotyping 3127 individuals (1669 patients and 1458 controls) from two different Spanish cohorts, we found that in women rs6622139 T/C was associated with MS susceptibility: [χ2; p = 0.004; OR (95% CI) = 0.50 (0.31-0.81)] and severity, since CC women presented lower MSSS scores than CT (U-Mann–Whitney; p = 0.039) or TT patients (U-Mann–Whitney; p = 0.031). Concordantly with the susceptibility conferred in women, rs6622139*T was associated with higher MSRV expression (U-Mann–Whitney; p = 0.003).ConclusionsOur present work supports the hypothesis of a direct involvement of HERV-W/MSRV in MS pathogenesis, identifying a genetic marker on chromosome X that could be one of the causes underlying the gender differences in MS.
BackgroundHuman endogenous retroviruses (HERVs) are genomic sequences that resulted from ancestral germ-line infections by exogenous retroviruses and therefore are transmitted in a Mendelian fashion. Increased HERV expression and antibodies to HERV antigens have been found in various autoimmune diseases. HERV-K18 in chromosome 1 was previously associated with type one diabetes and multiple sclerosis (MS). The etiology of these complex conditions has not been completely elucidated even after the powerful genome wide association studies (GWAS) performed. Nonetheless, this approach does not scrutinize the repetitive sequences within the genome, and part of the missing heritability could lie behind these sequences. We aimed at evaluating the role of HERV-K18 in chromosome 1 on autoimmune disease susceptibility.MethodsTwo HERV-K18 SNPs (97Y/C and 154W/Stop substitutions) conforming three haplotypes were genotyped in Spanish cohorts of multiple sclerosis (n = 942), rheumatoid arthritis (n = 462) and ethnically matched controls (n = 601). Our findings were pooled in a meta-analysis including 5312 autoimmune patients and 4032 controls.ResultsSignificant associations of both HERV-K18 polymorphisms in chromosome 1 with MS patients stratified by HLA-DRB1*15∶01 were observed [97Y/C p = 0.02; OR (95% CI) = 1.5 (1.04–2.17) and 154W/Stop: p = 0.001; OR (95% CI) = 1.6 (1.19–2.16)]. Combined meta-analysis of the previously published association studies of HERV-K18 with different autoimmune diseases, together with data derived from Spanish cohorts, yielded a significant association of the HERV-K18.3 haplotype [97Y–154W: pM-H = 0.0008; ORM-H (95% CI) = 1.22 (1.09–1.38)].ConclusionAssociation of the HERV-K18.3 haplotype in chromosome 1 with autoimmune-disease susceptibility was confirmed through meta-analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.