Background:KRAS mutation testing is required to select patients with metastatic colorectal cancer (CRC) to receive anti-epidermal growth factor receptor antibodies, but the optimal KRAS mutation test method is uncertain.Methods:We conducted a two-site comparison of two commercial KRAS mutation kits – the cobas KRAS Mutation Test and the Qiagen therascreen KRAS Kit – and Sanger sequencing. A panel of 120 CRC specimens was tested with all three methods. The agreement between the cobas test and each of the other methods was assessed. Specimens with discordant results were subjected to quantitative massively parallel pyrosequencing (MPP). DNA blends were tested to determine detection rates at 5% mutant alleles.Results:Reproducibility of the cobas test between sites was 98%. Six mutations were detected by cobas that were not detected by Sanger, and five were confirmed by MPP. The cobas test detected eight mutations which were not detected by the therascreen test, and seven were confirmed by MPP. Detection rates with 5% mutant DNA blends were 100% for the cobas and therascreen tests and 19% for Sanger.Conclusion:The cobas test was reproducible between sites, and detected several mutations that were not detected by the therascreen test or Sanger. Sanger sequencing had poor sensitivity for low levels of mutation.
BackgroundThe cobas 4800 BRAF V600 Mutation Test is a CE-marked and FDA-approved in vitro diagnostic assay used to select patients with metastatic melanoma for treatment with the selective BRAF inhibitor vemurafenib. We describe the pre-approval validation of this test in two external laboratories.MethodsMelanoma specimens were tested for BRAF V600 mutations at two laboratories with the: cobas BRAF Mutation Test; ABI BRAF test; and bidirectional direct sequencing. Positive (PPA) and negative (NPA) percent agreements were determined between the cobas test and the other assays. Specimens with discordant results were tested with massively parallel pyrosequencing (454). DNA blends with 5% mutant alleles were tested to assess detection rates.ResultsInvalid results were observed in 8/116 specimens (6·9%) with Sanger, 10/116 (8·6%) with ABI BRAF, and 0/232 (0%) with the cobas BRAF test. PPA was 97·7% for V600E mutation for the cobas BRAF test and Sanger, and NPA was 95·3%. For the cobas BRAF test and ABI BRAF, PPA was 71·9% and NPA 83·7%. For 16 cobas BRAF test-negative/ABI BRAF-positive specimens, 454 sequencing detected no codon 600 mutations in 12 and variant codon 600 mutations in four. For eight cobas BRAF test-positive/ABI BRAF-negative specimens, four were V600E and four V600K by 454 sequencing. Detection rates for 5% mutation blends were 100% for the cobas BRAF test, 33% for Sanger, and 21% for the ABI BRAF. Reproducibility of the cobas BRAF test was 111/116 (96%) between the two sites.ConclusionsIt is feasible to evaluate potential companion diagnostic tests in external laboratories simultaneously to the pivotal clinical trial validation. The health authority approved assay had substantially better performance characteristics than the two other methods. The overall success of the cobas BRAF test is a proof of concept for future biomarker development.
AimTo conduct a methods correlation study of three different assays for the detection of mutations at EGFR gene in human formalin-fixed paraffin-embedded tumour (FFPET) specimens of non-small cell lung carcinomas (NSCLC).MethodsWe conducted a 2-site method comparison study of two european conformity (CE) in vitro diagnostic (IVD)-marked assays, the cobas EGFR Mutation Test and the Therascreen EGFR29 Mutation Kit, and 2× bidirectional Sanger sequencing. We blind-tested 124 NSCLC FFPET specimens with all three methods; the cobas test was performed at both sites. Positive (PPA) and negative percent agreements (NPA) were determined for the cobas test versus each of the other two methods. Specimens yielding discordant test results between methods were further tested using quantitative massively parallel pyrosequencing (MPP).ResultsPPA between cobas and Sanger was 98.8%; NPA was 79.3%. Overall there were seven discordant results. MPP confirmed an exon 19 deletion in two cases and L858R mutation in four cases. PPA between cobas and Therascreen was 98.9% and NPA was 100%. There was one discordant result. Reproducibility of the cobas test between the two sites was 99.2%.ConclusionsThe invalid rates for the cobas test and Therascreen were lower than Sanger sequencing. The cobas and Therascreen assays showed a high degree of concordance, and both were more sensitive for the detection of exon 19 deletion and L858R mutations than Sanger. The cobas test was highly reproducible between the two testing sites, used the least amount of DNA input and was the only test with automated results reporting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.