Rare diseases are a group of uncommon diseases in the world population. To date, about 7000 rare diseases have been documented. However, most of them do not have a known treatment. As a result of the relatively low demand for their treatments caused by their scarce prevalence, the pharmaceutical industry has not sufficiently encouraged the research to develop drugs to treat them. This work aims to analyse potential drug-repositioning strategies for this kind of disease. Drug repositioning seeks to find new uses for existing drugs. In this context, it seeks to discover if rare diseases could be treated with medicines previously indicated to heal other diseases. Our approaches tackle the problem by employing computational methods that calculate similarities between rare and non-rare diseases, considering biological features such as genes, proteins, and symptoms. Drug candidates for repositioning will be checked against clinical trials found in the scientific literature. In this study, 13 different rare diseases have been selected for which potential drugs could be repositioned. By verifying these drugs in the scientific literature, successful cases were found for 75% of the rare diseases studied. The genetic associations and phenotypical features of the rare diseases were examined. In addition, the verified drugs were classified according to the anatomical therapeutic chemical (ATC) code to highlight the types with a higher predisposition to be repositioned. These promising results open the door for further research in this field of study.
In the recent years and due to COVID-19 pandemic, drug repurposing or repositioning has been placed in the spotlight. Giving new therapeutic uses to already existing drugs, this discipline allows to streamline the drug discovery process, reducing the costs and risks inherent to de novo development. Computational approaches have gained momentum, and emerging techniques from the machine learning domain have proved themselves as highly exploitable means for repurposing prediction. Against this backdrop, one can find that biomedical data can be represented in terms of graphs, which allow depicting in a very expressive manner the underlying structure of the information. Combining these graph data structures with deep learning models enhances the prediction of new links, such as potential disease-drug connections. In this paper, we present a new model named REDIRECTION, which aim is to predict new disease-drug links in the context of drug repurposing. It has been trained with a part of the DISNET biomedical graph, formed by diseases, symptoms, drugs, and their relationships. The reserved testing graph for the evaluation has yielded to an AUROC of 0.93 and an AUPRC of 0.90. We have performed a secondary validation of REDIRECTION using RepoDB data as the testing set, which has led to an AUROC of 0.87 and a AUPRC of 0.83. In the light of these results, we believe that REDIRECTION can be a meaningful and promising tool to generate drug repurposing hypotheses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.