[1] Oceanic Kelvin waves from the equator to the West African coast are investigated in the framework of tropical Atlantic intraseasonal variability. In order to better highlight the wave propagations, a 25-95 day band-pass filter was applied to the sea surface height (SSH) product derived from the TOPEX/POSEIDON altimeter and an ocean general circulation model simulation for the 1993-2000 period. In addition to equatorial eastward propagations, our analysis reveals recurrent and continuous propagations distinguishable over thousands of kilometers poleward along the coasts as far as about 10°-15°latitude, a novel result with altimeter data. The variance of the filtered SSH signal goes from 1 cm at the equator to 2 cm at the African coast. Estimates of the phase speed range from 1.5 to 2.1 m/s along the equator and the West African coastline. Such values are very close to those of equatorial Kelvin wave propagations, likely dominated by the first two baroclinic modes, supporting the fact that the coastal propagations are coastally trapped Kelvin waves. In order to simplify the description of these Kelvin waves, we present an intraseasonal climatology which reveals regular boreal autumn-winter equator to coast propagations. An improved description is achieved thanks to the computation of an extended empirical orthogonal function for the boreal autumn-winter propagations. Lag correlation of SSH signals allows for a twofold quantification: the phase speed and the importance of remote forcing along the coast. The remote forcing effect of intraseasonal Kelvin waves is clearly evidenced over coastal upwelling regions as far as 10°-15°latitude. The physical mechanism associated with the forcing of the Kelvin waves and its impacts will be investigated in a future paper.
Using both empirical and numerical ensemble approaches this study focuses on the Mediterranean/West African relationship in northern summer. Statistical analyses utilize skin temperature, sea surface temperature, in situ and satellite rainfall, outgoing longwave radiation (OLR) observations and reanalyzed data winds and specific humidity on isobaric surfaces. Numerical investigations are based on a large set of sensitivity experiments performed on four atmospheric general circulation models (AGCM): ARPEGE-Climat3, ECHAM4, LMDZ4 and UCLA7.3. Model outputs are compared to observations, discussed model by model and with an ensemble (multi-model) approach. As in previous studies the anomalous Mediterranean warm events are associated with specific impacts over the African monsoon region, i.e., a more intense monsoon, enhanced flux convergence and ascendances around the ITCZ, a strengthening of low level moisture advection and a more northward location of ascending motion in West Africa. The results show also new features (1) thermal variability observed in the two Mediterranean basins has unalike impacts, i.e. the western Mediterranean covaries with convection in Gulf of Guinea, while the eastern Mediterranean can be interpreted as Sahelian thermal-forcing; (2) although observations show symmetry between warming and cooling, modelling evidences only support the eastern warming influence; (3) anomalous East warm situations are associated with a more northward migration of the monsoon system accompanied by enhanced southwertely flow and weakened northeasterly climatological wind; (4) the multi-model response shows that anomalous East warm surface temperatures generate an enhancement of the overturning circulation in low and high levels, an increase in TEJ (Tropical Eeasterly Jet) and a decrease in AEJ (African Eeasterly Jet).
Abstract:In this paper, the teleconnections from the tropical Atlantic to the Indo-Pacific region from inter-annual to centennial time scales will be reviewed. Identified teleconnections and hypotheses on mechanisms at work are reviewed and further explored in a century-long pacemaker coupled ocean-atmosphere simulation ensemble. There is a substantial impact of the tropical Atlantic on the Pacific region at inter-annual time scales. An Atlantic Niño (Niña) event leads to rising (sinking) motion in the Atlantic region, which is compensated by sinking (rising) motion in the central-western Pacific. The sinking (rising) motion in the central-western Pacific induces easterly (westerly) surface wind anomalies just to the west, which alter the thermocline. These perturbations propagate eastward as upwelling (downwelling) Kelvin-waves, where they increase the probability for a La Niña (El Niño) event. Moreover, tropical North Atlantic sea surface temperature anomalies are also able to lead La Niña/El Niño development. At multidecadal time scales, a positive (negative) Atlantic Multidecadal Oscillation leads to a cooling (warming) of the eastern Pacific and a warming (cooling) of the western Pacific and Indian Ocean regions. The physical mechanism for this impact is similar to that at inter-annual time scales. At centennial time scales, the Atlantic warming induces a substantial reduction of the eastern Pacific warming even under CO 2 increase and to a strong subsurface cooling.
Atmosphere‐ocean general circulation models (CGCMs) show important systematic errors. Simulated precipitation in the tropics is generally overestimated over the oceans south of the equator, and stratocumulus (SCu) clouds are underestimated above too warm sea surface temperatures (SSTs). In the extratropics, SSTs are also too warm over the Southern Ocean. We argue that ameliorating these extratropical errors in a CGCM can result in an improved model's performance in the tropics depending upon the success in simulating the sensitivity of SCu to underlying SST. Our arguments are supported by the very different response obtained with two CGCMs to an idealized reduction of solar radiation flux incident at the top of the atmosphere over the Southern Ocean. It is shown that local perturbation impacts are very similar in the two models but that SST reductions in the SCu regions of the southern subtropics are stronger in the model with the stronger SCu‐SST feedbacks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.