BackgroundBreast cancer is a malignant disease that represents an important public health burden. The description of new molecular markers can be important to diagnosis, classification, and treatment. Transient receptor potential vanilloid 1 (TRPV1) polymodal channel is expressed in different neoplastic tissues and cell lines of breast cancer and associated with the regulation of tumor growth, tumor neurogenesis, cancer pain, and malignant progression of cancer. In primary and metastatic breast cancer tumors, TRPV1 is expressed during neoplastic transformation, invasive behavior, and resistance to cytotoxic therapy.ObjectiveThe objective of this study was to describe the subcellular distribution of TRPV1 in invasive breast carcinomas and its association with survival.MethodsIn 33 cases of invasive breast carcinomas, we identified immunohistochemical and immunofluorescent expression patterns of TRPV1 compared to healthy breast tissue. We characterized the expression of TRPV1 induced by estrogens in breast cancer cell lines MCF-7 and MDA to establish a model of the TRPV1–estrogen relationship regarding the malignant potential. We examined the association of TRPV1 patterns with patients’ survival with the Kaplan–Meyer model, using the log-rank test at 5 years of follow-up. The relation of TRPV1 expression patterns to the St. Gallen breast cancer subtypes was also tested.ResultsBased on immunohistochemical expression pattern of TRPV1, we distinguished two main categories of breast cancer tissue, a “classical category” that exhibited diffuse expression of the channel and a “non-classical category” that expressed the channel in aggregates at the ER/Golgi and/or surrounding these structures. The classical pattern of TRPV1 was associated with a higher survival rate. In breast cancer cell lines, increasing doses of estrogens induced increased TRPV1 expression with nonclassical patterns at higher doses via a mechanism dependent on ER α.ConclusionThe expression and distribution of TRPV1 in invasive breast carcinomas may be considered as a biomarker for prognosis of the disease and a probable therapeutic target.
The transient receptor potential (TRP) ion channel family consists of a broad variety of non-selective cation channels that integrate environmental physicochemical signals for dynamic homeostatic control. Involved in a variety of cellular physiological processes, TRP channels are fundamental to the control of the cell life cycle. TRP channels from the vanilloid (TRPV) family have been directly implicated in cell death. TRPV1 is activated by pain-inducing stimuli, including inflammatory endovanilloids and pungent exovanilloids, such as capsaicin (CAP). TRPV1 activation by high doses of CAP (>10 μM) leads to necrosis, but also exhibits apoptotic characteristics. However, CAP dose–response studies are lacking in order to determine whether CAP-induced cell death occurs preferentially via necrosis or apoptosis. In addition, it is not known whether cytosolic Ca2+ and mitochondrial dysfunction participates in CAP-induced TRPV1-mediated cell death. By using TRPV1-transfected HeLa cells, we investigated the underlying mechanisms involved in CAP-induced TRPV1-mediated cell death, the dependence of CAP dose, and the participation of mitochondrial dysfunction and cytosolic Ca2+ increase. Together, our results contribute to elucidate the pathophysiological steps that follow after TRPV1 stimulation with CAP. Low concentrations of CAP (1 μM) induce cell death by a mechanism involving a TRPV1-mediated rapid and transient intracellular Ca2+ increase that stimulates plasma membrane depolarization, thereby compromising plasma membrane integrity and ultimately leading to cell death. Meanwhile, higher doses of CAP induce cell death via a TRPV1-independent mechanism, involving a slow and persistent intracellular Ca2+ increase that induces mitochondrial dysfunction, plasma membrane depolarization, plasma membrane loss of integrity, and ultimately, cell death.
Background and purpose Postural tachycardia syndrome (POTS) is a form of autonomic dysfunction characterized by symptoms of orthostatic intolerance, often accompanied by sudomotor dysfunction and gastrointestinal dysmotility. Recently, evidence has accumulated that in a subset of patients, the pathogenesis of dysautonomia may be immune‐mediated. The aim of the current report was to evaluate the use of intravenous immunoglobulin (IVIG) treatment in patients with progressive and/or refractory immune‐mediated POTS. Methods We retroactively assessed the effect and tolerance of monthly administered IVIG in six patients using autonomic function testing, standardized symptom questionnaires, and patients' symptom diaries both before and 6 months into IVIG treatment. Objective outcome measures included heart rate increase after 10 min of head‐up tilt as well as duration and anhidrotic area in a thermoregulatory sweat test. Subjective outcome measures were patient reports and symptom ratings from the symptom questionnaire. Results All patients responded to immunomodulatory treatment, regardless of disease duration. After 6 months of IVIG, symptom severity was reduced by nearly 40%. Autonomic function testing showed improved cardiovascular functioning by 50% and a reduction of anhidrotic areas by one third. Overall, tolerance of IVIG treatment was poor, but could be improved by a reduction in infusion rate, premedication with steroids, and additional intravenous hydration. Conclusions Using subjective but also standardized objective measures, the case series describes promising effects of IVIG treatment in POTS patients with immune‐mediated dysautonomia. By reducing the infusion rate, pretreatment with steroids, and intravenous hydration, tolerance could be improved, and no patient had to discontinue the treatment.
Background: Postural tachycardia syndrome (POTS) is a form of autonomic dysregulation and is characterized by an excessive heart rate (HR) increment upon the upright body position while blood pressure is maintained. Patients experience typical symptoms of orthostatic intolerance such as dizziness, nausea and cognitive impairments. The present study assessed position-dependent attentional and cognitive functioning in POTS patients compared to healthy subjects and tested the response of cognitive performance to acute water intake. Methods: Data was obtained from eight patients with neuropathic POTS and eight healthy subjects of similar age and gender. All participants completed questionnaires that assessed health-related quality of life and depression and underwent four rounds of neuropsychological testing overall, each before and after the intake of 500 ml still mineral water and both in the supine and in the upright posture. Results: Postural tachycardia syndrome patients showed deficits in working memory (WM) exclusively in the upright position compared to healthy subjects, but no position-dependent impairments in alertness or divided attention. Rapid water ingestion had a beneficial effect on WM in the upright posture, lead to a decrease in HR increment and to an improvement of subjective symptom experience. Conclusion: The results provide support for the occurrence of purely orthostatic cognitive deficits in POTS, especially when increased executive control and cognitive resources are required and document a favorable effect of water intake on cognitive performance. These findings have important implications for the management of cognitive symptoms in POTS as high water intake is an easy and accessible strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.