Smoking is a method for preserving fi shes that, after previous salting, are processed with organic components obtained from smoke. Smoke contains volatile aromatic substances that give specifi c features to fi sh fl esh (attractive appearance, colour, fl avour and aroma) and have bactericidal eff ects. Smoked fi sh is a fl avourful and nutritious product, ready for use with or without further cooking or processing. Besides useful compounds, smoke contains harmful substances that have carcinogenic properties. The quality of smoked fi sh depends on many factors including the species and size of fi sh, fi sh diet, condition and treatment before smoking (fresh, frozen), and the methods of salting, heat treatment and smoking. Depending on the temperature of the smoking chamber, smoking can be cold, warm or hot, and depending on the environment in which smoking is conducted, diff erent smoking techniques are employed: smoking with natural smoke, smoking without smoke and mixed smoking. When smoking is with natural smoke, fi sh is processed in a smoke-air mixture, which is formed during the direct incomplete combustion (pyrolysis) of wood. Smoking without smoke utilises smoke preparations obtained from smoke or its components. Fish smoked with smoke preparations does not contain harmful components, because smoke preparations are previously purifi ed to remove these substances. Liquid smoke (smoke aqueous solution), which is suffi ciently studied, available and has minimal potential toxicity, is attracting more attention today.
Fatty acid composition of foods has a great impact on nutrition and health. Therefore, thе determination and knowledge of the fatty acid composition of food is very important for nutrition. Due to the high nutritional characteristics of ostrich meat and its products, the research determining their quality is of topical interest. The aim of the present investigation was the determination of fatty acid composition of ostrich adipose tissue. The content of fatty acids was determined according to AOAC Official Methods of Analysis and determination was performed using a gas chromatograph with a flame-ionization detector (GC-FID). The results are expressed as a percentage of the total content of fatty acids. The method was validated and whereupon the following parameters were determined: linearity, precision, recovery, limit of detection and limit of quantification. The repeatability was within of 0.99 to 2.15%, reproducibility from 2.01 to 4.57%, while recovery ranged from 94.89 to 101.03%. According to these results, this method is accurate and precise and can be used for analysis of fatty acids in foods. It was concluded that the content of saturated fatty acids (SFA) accounted 34.75%, of monounsaturated fatty acids (MUFA) 38.37%, of polyunsaturated fatty acids (PUFA) 26.88%, of total unsaturated fatty acids (UFA) 65.25% and of desirable fatty acids (DFA) (total unsaturated + stearic acid) 70.37% of the analysed samples. The ratio polyunsaturated/saturated fatty acids accounted 0.77. The most present fatty acid is the oleic (C18:1n9c) with 28.31%, followed by palmitic (C16:0) with 27.12% and linoleic (C18:2n6c) acid with 25.08%. Other fatty acids are contained in significantly lower quantities.
Abstract.To study the effect of pork adipose tissue substitution with vegetable oils in chicken frankfurters, six frankfurter formulations were produced: control; with pork backfat; with olive oil; with rapeseed oil; with sunflower oil; with palm oil, and; with a mixture of 12% rapeseed oil and 8% palm oil. Fatty acid composition and cholesterol content and some oxides thereof were determined in the final products. The use of vegetable oils resulted in improvement of the fatty acid composition and nutritional of frankfurters. Frankfurters with vegetable oils contained significantly less cholesterol and some of its oxides, compared to the frankfurters with pork fat. The formulation with palm oil had the least favourable fatty acid composition. The use of 12% rapeseed oil improved the ratio of fatty acids in frankfurters with a mixture of rapeseed and palm oils. Complete pork fat replacement with vegetable oils in chicken frankfurter production is technologically possible. The mixture of 12% rapeseed oil and 8% palm oil is a good alternative to pork fat from health aspects. Further research is needed to find the most appropriate mixture of vegetable oils, which will produce frankfurters with good sensory characteristics, a more desirable fatty acid ratio and high nutritional value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.