The aim of the present work was the simultaneous treatment of urban wastewater using microalgae and the energetic valorization of the obtained biomass. Chlorella vulgaris (Cv) Scenedesmus obliquus (Sc) and a naturally occurring algal Consortium C (ConsC) were grown in an urban wastewater. The nutrient removals were quite high and the treated water fits the legislation (PT Dec-Lei 236/98) in what concerns the parameters analysed (N, P, COD). After nutrient depletion the microalgae remained two more weeks in the photobioreactor (PBR) under nutritional stress conditions, to induce sugar accumulation (22-43%). The stressed biomass was converted into biohydrogen (bioH 2), a clean energy carrier, through dark fermentation by a strain of the bacteria Enterobacter aerogenes. The fermentation kinetics were monitored and fitted to a modified Gompertz model. The highest bioH 2 production yield was obtained for Scenedesmus obliquus (56.8 mL H 2 /g SV) which was very similar when using the same algae grown in synthetic media.
Olive mill wastewater (OMW) is a major waste stream resulting from numerous operations that occur during the production stages of olive oil. The resulting effluent contains various organic and inorganic contaminants and its environmental impact can be notable. The present work aims at investigating the efficiency of (i) jet-loop reactor with ultrafiltration (UF) membrane system (Jacto.MBR), (ii) solar photo-Fenton oxidation after coagulation/flocculation pre-treatment and (iii) integrated membrane filtration processes (i.e. UF/nanofiltration (NF)) used for the treatment of OMW. According to the results, the efficiency of the biological treatment was high, equal to 90% COD and 80% total phenolic compounds (TPh) removal. A COD removal higher than 94% was achieved by applying the solar photo-Fenton oxidation process as post-treatment of coagulation/flocculation of OMW, while the phenolic fraction was completely eliminated. The combined UF/NF process resulted in very high conductivity and COD removal, up to 90% and 95%, respectively, while TPh were concentrated in the NF concentrate stream (i.e. 93% concentration). Quite important is the fact that the NF concentrate, a valuable and polyphenol rich stream, can be further valorized in various industries (e.g. food, pharmaceutical, etc.). The above treatment processes were found also to be able to reduce the initial OMW phytotoxicity at greenhouse experiments; with the effluent stream of solar photo-Fenton process to be the least phytotoxic compared to the other treated effluents. A SWOT (Strength, Weakness, Opportunities, Threats) analysis was performed, in order to determine both the strengths of each technology, as well as the possible obstacles that need to overcome for achieving the desired levels of treatment. Finally, an economic evaluation of the tested technologies was performed in an effort to measure the applicability and viability of these systems at real scale; highlighting that the cost cannot be regarded as a 'cut off criterion', since the most cost-effective option in not always the optimum one.
The circular bioeconomy concept relies on the exploitation of wastes as a feedstock of different biotechnological processes to obtain, as much as possible, a huge spectrum of biochemical components through a biorefinery platform. This work deals with the treatment of brewery effluent through the cultivation of Scenedesmus obliquus microalga and the use of the biomass in a complex biorefinery. The treatment proved efficient in the removal of nutrients (N, P and COD removals of 88, 30 and 71% respectively). Several compounds and products were obtained from the biomass, such as: (a) phenols (0.249-1.016 mg GAE mL −1 ) and flavonoids (0.05-0.167 mg CE mL −1 ) by subcritical water extraction (SWE) at 120 °C, the extraction efficiency being five times higher at 200 °C; (b) biohydrogen by dark fermentation (67.1 mL H 2 g VS −1 ); (c) bio-oil (64%), biochar (30%) and biogas (6%) by pyrolysis; and (d) enhanced capacity of germination/growth of wheat and barley seeds by S. obliquus culture and biomass (pellet, after centrifugation); better results were obtained with the biomass cultivated in brewery effluent (when compared with synthetic medium), and the biomass pellet was better than the whole culture; barley seeds 1170 A Ferreira et al.In the Field: Scenedesmus obliquus microalga-based biorefinery aiming at a circular bioeconomy treated with the pellet from the brewery effluent had the highest germination index (GI) of 85 compared with the control (tap water) GI of 35. The innovative study emphasis was on reducing microalgae production costs, providing environmental benefits in a biorefinery-based S. obliquus platform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.