In innate immune responses, activation of Toll-like receptors (TLRs) triggers direct antimicrobial activity against intracellular bacteria, which in murine, but not human, monocytes and macrophages is mediated principally by nitric oxide. We report here that TLR activation of human macrophages up-regulated expression of the vitamin D receptor and the vitamin D-1-hydroxylase genes, leading to induction of the antimicrobial peptide cathelicidin and killing of intracellular Mycobacterium tuberculosis. We also observed that sera from African-American individuals, known to have increased susceptibility to tuberculosis, had low 25-hydroxyvitamin D and were inefficient in supporting cathelicidin messenger RNA induction. These data support a link between TLRs and vitamin D-mediated innate immunity and suggest that differences in ability of human populations to produce vitamin D may contribute to susceptibility to microbial infection.
Leprosy enables investigation of mechanisms by which the innate immune system contributes to host defense against infection, since in one form, the disease progresses, and in the other, the infection is limited. We report that Toll-like receptor (TLR) activation of human monocytes induces rapid differentiation into two distinct subsets: DC-SIGN + CD16 + macrophages and CD1b + DC-SIGN − dendritic cells. DC-SIGN + phagocytic macrophages were expanded by TLR-mediated upregulation of IL-15/IL-15R. CD1b + dendritic cells were expanded by TLR-mediated upregulation of GM-CSF/ GM-CSFR, promoted T cell activation and secreted proinflammatory cytokines. While DC-SIGN + macrophages were detected in lesions of all leprosy patients, CD1b + dendritic cells were not detected in patients with the progressive lepromatous form, except during reversal reactions in which bacilli were cleared by Th1 responses. In T-lep lesions, DC-SIGN + cells were positive for macrophage markers, but negative for dendritic cell markers. Thus, TLR-induced differentiation of monocytes into either macrophages or dendritic cells appears critically to influence effective host defenses in human infectious disease.
A key target of many intracellular pathogens is the macrophage. Although macrophages can generate antimicrobial activity, neutrophils have been shown to have a key role in host defense, presumably by their preformed granules containing antimicrobial agents. Yet the mechanism by which neutrophils can mediate antimicrobial activity against intracellular pathogens such as Mycobacterium tuberculosis has been a long-standing enigma. We demonstrate that apoptotic neutrophils and purified granules inhibit the growth of extracellular mycobacteria. Phagocytosis of apoptotic neutrophils by macrophages results in decreased viability of intracellular M. tuberculosis. Concomitant with uptake of apoptotic neutrophils, granule contents traffic to early endosomes, and colocalize with mycobacteria. Uptake of purified granules alone decreased growth of intracellular mycobacteria. Therefore, the transfer of antimicrobial peptides from neutrophils to macrophages provides a cooperative defense strategy between innate immune cells against intracellular pathogens and may complement other pathways that involve delivery of antimicrobial peptides to macrophages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.