CCR4-NOT is a major effector complex in miRNAmediated gene silencing. It is recruited to miRNA targets through interactions with tryptophan (W)containing motifs in TNRC6/GW182 proteins and is required for both translational repression and degradation of miRNA targets. Here, we elucidate the structural basis for the repressive activity of CCR4-NOT and its interaction with TNRC6/GW182s. We show that the conserved CNOT9 subunit attaches to a domain of unknown function (DUF3819) in the CNOT1 scaffold. The resulting complex provides binding sites for TNRC6/GW182, and its crystal structure reveals tandem W-binding pockets located in CNOT9. We further show that the CNOT1 MIF4G domain interacts with the C-terminal RecA domain of DDX6, a translational repressor and decapping activator. The crystal structure of this complex demonstrates striking similarity to the eIF4G-eIF4A complex. Together, our data provide the missing physical links in a molecular pathway that connects miRNA target recognition with translational repression, deadenylation, and decapping.
Nonsense-mediated mRNA decay (NMD) is a eukaryotic quality control mechanism that detects aberrant mRNAs containing nonsense codons and induces their rapid degradation. This degradation is mediated by SMG6, an NMDspecific endonuclease, as well as the SMG5 and SMG7 proteins, which recruit general mRNA decay enzymes. However, it remains unknown which specific decay factors are recruited and whether this recruitment is direct. Here, we show that SMG7 binds directly to POP2, a catalytic subunit of the CCR4-NOT deadenylase complex, and elicits deadenylation-dependent decapping and 59-to-39 decay of NMD targets. Accordingly, a catalytically inactive POP2 mutant partially suppresses NMD in human cells. The SMG7-POP2 interaction is critical for NMD in cells depleted of SMG6, indicating that SMG7 and SMG6 act redundantly to promote the degradation of NMD targets. We further show that UPF1 provides multiple binding sites for decapping factors. These data unveil a missing direct physical link between NMD and the general mRNA decay machinery and indicate that NMD employs diverse and partially redundant mechanisms to ensure robust degradation of aberrant mRNAs.
The CCR4-NOT complex plays a crucial role in post-transcriptional mRNA regulation in eukaryotes. This complex catalyzes the removal of mRNA poly(A) tails, thereby repressing translation and committing an mRNA to degradation. The conserved core of the complex is assembled by the interaction of at least two modules: the NOT module, which minimally consists of NOT1, NOT2 and NOT3, and a catalytic module comprising two deadenylases, CCR4 and POP2/CAF1. Additional complex subunits include CAF40 and two newly identified human subunits, NOT10 and C2orf29. The role of the NOT10 and C2orf29 subunits and how they are integrated into the complex are unknown. Here, we show that the Drosophila melanogaster NOT10 and C2orf29 orthologs form a complex that interacts with the N-terminal domain of NOT1 through C2orf29. These interactions are conserved in human cells, indicating that NOT10 and C2orf29 define a conserved module of the CCR4-NOT complex. We further investigated the assembly of the D. melanogaster CCR4-NOT complex, and demonstrate that the conserved armadillo repeat domain of CAF40 interacts with a region of NOT1, comprising a domain of unknown function, DUF3819. Using tethering assays, we show that each subunit of the CCR4-NOT complex causes translational repression of an unadenylated mRNA reporter and deadenylation and degradation of a polyadenylated reporter. Therefore, the recruitment of a single subunit of the complex to an mRNA target induces the assembly of the complete CCR4-NOT complex, resulting in a similar regulatory outcome.
The removal of the 5′-cap structure by the decapping enzyme DCP2 and its coactivator DCP1 shuts down translation and exposes the mRNA to 5′-to-3′ exonucleolytic degradation by XRN1. Although yeast DCP1 and DCP2 directly interact, an additional factor, EDC4, promotes DCP1–DCP2 association in metazoan. Here, we elucidate how the human proteins interact to assemble an active decapping complex and how decapped mRNAs are handed over to XRN1. We show that EDC4 serves as a scaffold for complex assembly, providing binding sites for DCP1, DCP2 and XRN1. DCP2 and XRN1 bind simultaneously to the EDC4 C-terminal domain through short linear motifs (SLiMs). Additionally, DCP1 and DCP2 form direct but weak interactions that are facilitated by EDC4. Mutational and functional studies indicate that the docking of DCP1 and DCP2 on the EDC4 scaffold is a critical step for mRNA decapping in vivo. They also revealed a crucial role for a conserved asparagine–arginine containing loop (the NR-loop) in the DCP1 EVH1 domain in DCP2 activation. Our data indicate that DCP2 activation by DCP1 occurs preferentially on the EDC4 scaffold, which may serve to couple DCP2 activation by DCP1 with 5′-to-3′ mRNA degradation by XRN1 in human cells.
Pulmonary diseases of viral origin are often followed by the manifestation of secondary infections, leading to further clinical complications and negative disease outcomes. Thus, research on secondary infections is essential. Here, we review clinical data of secondary bacterial infections developed after the onset of pulmonary viral infections. We review the most recent clinical data and current knowledge of secondary bacterial infections and their treatment in SARS-CoV-2 positive patients; case reports from SARS-CoV, MERS-CoV, SARS-CoV2 and the best-studied respiratory virus, influenza, are described. We outline treatments used or prophylactic measures employed for secondary bacterial infections. This evaluation includes recent clinical reports of pulmonary viral infections, including those by COVID-19, that reference secondary infections. Where data was provided for COVID-19 patients, a mortality rate of 15.2% due to secondary bacterial infections was observed for patients with pneumonia (41 of 268). Most clinicians treated patients with SARS-CoV-2 infections with prophylactic antibiotics (63.7%, n = 1,901), compared to 73.5% ( n = 3,072) in all clinical reports of viral pneumonia included in this review. For all cases of viral pneumonia, a mortality rate of 10.9% due to secondary infections was observed (53 of 482). Most commonly, quinolones, cephalosporins and macrolides were administered, but also the glycopeptide vancomycin. Several bacterial pathogens appear to be prevalent as causative agents of secondary infections, including antibiotic-resistant strains of Staphylococcus aureus and Klebsiella pneumoniae .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.