Fault detection is one of the key steps in Fault Detection and Isolation (FDI) and, therefore, critical for subsequent prognosis or implementation of Fault Tolerant Control (FTC). It is, therefore, advisable to utilize detection algorithms which are quick and can detect the smallest faults. Model-based detection methods satisfy both these criteria and should be preferred. However, a big limitation for model-based methods is that they require the accurate value of the component parameters, which is difficult to obtain in real situations. This limits the accuracy of model-based methods. This paper proposes a new method for fault detection using Energy Activity (EA) which can detect minute levels of fault in systems with high component uncertainty. Different forms of EA are developed for use as an FDI metric. The proposed forms are simulated using a two-tank system under various types of faults. The results are compared with each other and with the traditional model-based FDI method using Analytical Redundancy Relations (ARRs). The simulations are performed considering model uncertainties to check the inherent performance of the methods. From initial simulations, it is established that the integral form of EA is most suited for fault detection. The integral for if EA is then tested using a real two-tank system considering both the model and measurement uncertainties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.