Water excretion by the kidney is regulated by the peptide hormone vasopressin. Vasopressin increases the water permeability of the renal collecting duct cells, allowing more water to be reabsorbed from collecting duct urine to blood. Despite long-standing interest in this process, the mechanism of the water permeability increase has remained undetermined. Recently, a molecular water channel (AQP-CD) has been cloned whose expression appears to be limited to the collecting duct. Previously, we immunolocalized this water channel to the apical plasma membrane (APM) and to intracellular vesicles (IVs) of collecting duct cells. Here, we test the hypothesis that vasopressin increases cellular water permeability by inducing exocytosis of AQP-CD-laden vesicles, transferring water channels from IVs to APM. Rat collecting ducts were perfused in vitro to determine water permeability and subcellular distribution of AQP-CD in the same tubules. The collecting ducts were fixed for immunoelectron microscopy before, during, and after exposure to vasopressin. Vasopressin exposure induced increases in water permeability and the absolute labeling density of AQP-CD in the APM. In parallel, the APM:IV labeling ratio increased. Furthermore, in response to vasopressin withdrawal, AQP-CD labeling density in the APM and the APM:IV labeling ratio decreased in parallel to a measured decrease in osmotic water permeability. We conclude that vasopressin increases the water permeability of collecting duct cells by inducing a reversible translocation of AQP-CD water channels from IVs to the APM.Vasopressin (the antidiuretic hormone) is a 9-amino acid peptide hormone, secreted by the neurohypophysis, which acts on the kidney via the adenylyl cyclase-coupled vasopressin receptor (V2 receptor) to regulate water excretion. Vasopressin reduces urinary water excretion in part by increasing the water permeability of the renal collecting duct, thereby accelerating the osmotically driven absorption of water from the collecting duct lumen to the blood. Although the mechanism by which the water permeability increases is controversial, it presumably involves an increase in the number or unit conductance of water channels in the apical plasma membrane (APM), the rate-limiting barrier for net transepithelial water transport (1, 2). Several molecular water channels of the aquaporin (AQP) family are expressed in the kidney (3-5). One of these, AQP-CD (also called WCH-CD or AQP-2), appears to be expressed exclusively in the renal collecting duct (6, 7) and has been documented to be the major pathway responsible for vasopressin-regulated water transport across collecting duct cells (8,9). Several years ago, it was hypothesized (10) that vasopressin induces translocation of water channels from intracellular vesicles (IVs) to the APM by exocytosis (the "shuttle hypothesis"). However, direct experimental evidence for translocation ofwater channels is lacking. We recently demonstrated that the AQP-CD water channel is present in the APM and IVs of collecting d...
During the past two decades, several cell membrane receptors, which preferentially bind extracellular nucleotides, and their analogs have been identified. These receptors, collectively known as nucleotide receptors or "purinergic" receptors, have been characterized and classified on the basis of their biological actions, their pharmacology, their molecular biology, and their tissue and cell distribution. For these receptors to have biological and physiological relevance, nucleotides must be released from cells. The field of extracellular ATP release and signaling is exploding, as assays to detect this biological process increase in number and ingenuity. Studies of ATP release have revealed a myriad of roles in local regulatory (autocrine or paracrine) processes in almost every tissue in the body. The regulatory mechanisms that these receptors control or modulate have physiological and pathophysiological roles and potential therapeutic applications. Only recently, however, have ATP release and nucleotide receptors been identified along the renal epithelium of the nephron. This work has set the stage for the study of their physiological and pathophysiological roles in the kidney. This review provides a comprehensive presentation of these issues, with a focus on the renal epithelium.
Physiological and pharmacological studies have demonstrated that extracellular ATP, acting through P2Y(2) purinoceptor, modulates water permeability of renal medullary collecting duct cells and the secretion of ions, mucin, and surfactant phospholipids by respiratory epithelia. Here we provide direct molecular evidence for the expression of P2Y(2) purinoceptor in these cells. RT-PCR confirmed P2Y(2) purinoceptor mRNA expression in rat lung and kidney and demonstrated expression in renal collecting ducts. Northern analysis showed that both lung and kidney express one 3.6-kb P2Y(2) purinoceptor mRNA transcript. Immunoblots using peptide-derived polyclonal antibody to P2Y(2) purinoceptor showed that inner medullary collecting ducts (IMCD) express two distinct and specific products (47 and 105 kDa) and account for the majority of the receptor expression in inner medulla, whereas the 105-kDa form is predominant in lung. Immunoperoxidase labeling on cryosections showed localization of receptor protein in the apical and basolateral domains of IMCD principal cells and in the secretory cells (Clara cells and goblet cells) of the terminal respiratory bronchioles.
The P2u class of nucleotide receptors is linked to mobilization of intracellular Ca2+ in many cell types, including the renal collecting duct cells. In the present studies, we examined the effects of nucleotides (ATP, UTP, and ADP; 10 microM each) on the arginine vasopressin (AVP, 0.1 nM)-stimulated osmotic water permeability (Pf) in in vitro perfused terminal inner medullary collecting ducts (IMCD) of rat. ATP or UTP, when added to the bath, decreased the AVP-stimulated Pf by approximately 40%. These effects were reversible upon withdrawal of the nucleotides. However, addition of ADP to the bath or sham exchange of the bath had no significant effect on the Pf. Furthermore, ATP did not have any significant effect on the Pf stimulated either by a membrane-permeant, nonhydrolyzable adenosine 3',5'-cyclic monophosphate (cAMP) analogue [8-(4-chlorophenylthio)-cAMP, 0.1 mM] o by forskolin (1 microM). In line with these findings, ATP decreased the AVP-stimulated cAMP levels in IMCD suspensions to approximately 68%. In addition, ATP did not exert an inhibitory effect on the AVP-stimulated Pf in the presence of calphostin C (150 nM), an inhibitor of protein kinase C. These results lead us to conclude the following: 1) agonist occupancy of the putative nucleotide receptor in the terminal IMCD causes an inhibition of AVP-stimulated Pf; and 2) this effect is due to a decrease in cellular cAMP levels, most likely resulting from activation of the phosphoinositide signaling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.