In this work, the hot forging behavior of a dual phase stainless steel in the temperature range of 850 -1250 °C was investigated. The study revealed the occurrence of a significant cracking phenomenon for processing temperatures below 950 °C that was attributed to the combined effect of intermetallic precipitation and severe deformation. EBSD examination highlighted the occurrence of continuous dynamic recrystallization in both ferrite and austenite microstructures for processing temperatures above 1050 °C. Increasing the hot forging temperature to 1250 °C increased the low angle grain boundaries fraction and lowered the one of the high angle grain boundaries. This was accompanied by a gradual change in the crystallographic texture of the material. The mechanical behavior investigation showed that the steel plasticity, sharply dropped after forging at 850°, was gradually recovered after hot forging at temperatures above 1050°C. This was confirmed by nanoindentation measurements that revealed a remarkable increase of the hardness and young modulus of the steel after hot forging at 850°C and 950°C due to the dislocation nucleation and the phase precipitation at /δ interface. The enhancement of dislocation movement at the vicinity of the grain boundaries due to the absence of phase as well as the dynamic recovery and recrystallization occurring in the temperature range of 1050°C -1250 °C improved the global mechanical properties of the hot forged steel.
In this work, the hot forging behavior of a dual phase stainless steel in the temperature range of 850 – 1250 °C was investigated. The study revealed the occurrence of a significant cracking phenomenon for processing temperatures below 950 °C that was attributed to the combined effect of intermetallic precipitation and severe deformation. EBSD examination highlighted the occurrence of continuous dynamic recrystallization in both ferrite and austenite microstructures for processing temperatures above 1050 °C. Increasing the hot forging temperature to 1250 °C increased the low angle grain boundaries fraction and lowered the one of the high angle grain boundaries. This was accompanied by a gradual change in the crystallographic texture of the material. The mechanical behavior investigation showed that the steel plasticity, sharply dropped after forging at 850°, was gradually recovered after hot forging at temperatures above 1050°C. This was confirmed by nanoindentation measurements that revealed a remarkable increase of the hardness and young modulus of the steel after hot forging at 850°C and 950°C due to the dislocation nucleation and the s phase precipitation at g/δ interface. The enhancement of dislocation movement at the vicinity of the grain boundaries due to the absence of s phase as well as the dynamic recovery and recrystallization occurring in the temperature range of 1050°C - 1250 °C improved the global mechanical properties of the hot forged steel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.