Despite highly conserved chromatin states and cis-regulatory elements, studies of metazoan genomes reveal that gene organization and the strategies to control mRNA expression can vary widely among animal species. C. elegans gene regulation is often assumed to be similar to that of other model organisms, yet evidence suggests the existence of distinct molecular mechanisms to pattern the developmental transcriptome, including extensive post-transcriptional RNA control pathways, widespread splice leader (SL) trans-splicing of pre-mRNAs, and the organization of genes into operons. Here, we performed ChIP-seq for histone modifications in highly synchronized embryos cohorts representing three major developmental stages, with the goal of better characterizing whether the dynamic changes in embryonic mRNA expression are accompanied by changes to the chromatin state. We were surprised to find that thousands of promoters are persistently marked by active histone modifications, despite a fundamental restructuring of the transcriptome. We employed global run-on sequencing using a long-read nanopore format to map nascent RNA transcription across embryogenesis, finding that the invariant open chromatin regions are persistently transcribed by Pol II at all stages of embryo development, even though the mature mRNA is not produced. By annotating our nascent RNA sequencing reads into directional transcription units, we find extensive evidence of polycistronic RNA transcription genome-wide, suggesting that nearby genes in C. elegans are linked by shared transcriptional regulatory mechanisms. We present data indicating that the sharing of cisregulatory sequences has constrained C. elegans gene positioning and likely explains the remarkable retention of syntenic gene pairs over long evolutionary timescales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.