Neonatal diabetes is caused by single gene mutations reducing pancreatic β cell number or impairing β cell function. Understanding the genetic basis of rare diabetes subtypes highlights fundamental biological processes in β cells. We identified 6 patients from 5 families with homozygous mutations in the YIPF5 gene, which is involved in trafficking between the endoplasmic reticulum (ER) and the Golgi. All patients had neonatal/early-onset diabetes, severe microcephaly, and epilepsy. YIPF5 is expressed during human brain development, in adult brain and pancreatic islets. We used 3 human β cell models ( YIPF5 silencing in EndoC-βH1 cells, YIPF5 knockout and mutation knockin in embryonic stem cells, and patient-derived induced pluripotent stem cells) to investigate the mechanism through which YIPF5 loss of function affects β cells. Loss of YIPF5 function in stem cell–derived islet cells resulted in proinsulin retention in the ER, marked ER stress, and β cell failure. Partial YIPF5 silencing in EndoC-βH1 cells and a patient mutation in stem cells increased the β cell sensitivity to ER stress–induced apoptosis. We report recessive YIPF5 mutations as the genetic cause of a congenital syndrome of microcephaly, epilepsy, and neonatal/early-onset diabetes, highlighting a critical role of YIPF5 in β cells and neurons. We believe this is the first report of mutations disrupting the ER-to-Golgi trafficking, resulting in diabetes.
BackgroundTo characterize cathepsin K (CTSK) mutations in a group of patients with pycnodysostosis, who presented with either short stature or atypical fractures to pediatric endocrinology or dysmorphic features to pediatric genetics clinics.MethodsSeven exons and exon/intron boundaries of CTSK gene for the children and their families were amplified with PCR and sequenced. Sixteen patients from 14 families with pycnodysostosis, presenting with typical dysmorphic features, short stature, frequent fractures and osteosclerosis, were included in the study.ResultsWe identified five missense mutations (M1I, I249T, L7P, D80Y and D169N), one nonsense mutation (R312X) and one 301 bp insertion in intron 7, which is revealed as Alu sequence; among them, only L7P and I249 were described previously. The mutations were homozygous in all cases, and the families mostly originated from the region where consanguineous marriage rate is the highest. Patients with M1I mutation had fractures, at younger ages than the other pycnodysostosis cases in our cohort which were most probably related to the severity of mutation, since M1I initiates the translation, and mutation might lead to the complete absence of the protein. The typical finding of pycnodysostosis, acroosteolysis, could not be detected in two patients, although other patients carrying the same mutations had acroosteolysis. Additionally, none of the previously described hot spot mutations were seen in our cohort; indeed, L7P and R312X were the most frequently detected mutations.ConclusionsWe described a large cohort of pycnodysostosis patients with genetic and phenotypic features, and, first Alu sequence insertion in pycnodysostosis.
Congenital portosystemic shunt (CPSS) is persistence of an anomalous embryological connection of the portal vein with a large vein of the vena cava system. Clinical presentations include neonatal cholestasis, liver tumors, and encephalopathy, but can be variable in timing and symptomatology. We report 2 girls who presented 10 years apart with the same complaint of early pubarche at age 7 years, with inappropriately low DHEAS levels. In addition to hyperandrogenemia (elevated testosterone and androstenedione) and advanced bone age, both had hyperinsulinemia, and hypothyroxinemia. The 2nd case also had symptomatic hypoglycemia. Presentation of CPSS with this combination of findings in prepubertal children has not been reported previously. With further investigations, we proposed novel mechanisms explaining these manifestations. Hyperandrogenemia is caused by decreased hepatic sulfation of DHEA to less active DHEAS due to shunting of DHEA to systemic circulation. Elevated DHEA is then used for synthesis of more potent androgens. Shunting of postabsorbtive glucose from portal to systemic circulation causes early hyperglycemia leading to exaggerated insulin secretion. Insulin bypasses the hepatic metabolism directly entering into the systemic circulation, which results in hyperinsulinemia, then in turn causes late hypoglycemia. Finally, hypothyroxinemia was linked to thyroxin-binding globulin deficiency, which has not been reported in CPSS.
Hypothalamic obesity (HyOb) is a complex neuroendocrine disorder caused by damage to the hypothalamus, which results in disruption of energy regulation. The key hypothalamic areas of energy regulation are the ARC (arcuate nucleus), the VMH (ventromedial hypothalamus), the PVN (paraventriculer nuclei) and the LHA (lateral hypothalamic area). These pathways can be disrupted mechanically by hypothalamic tumors, neurosurgery, inflammatory disorders, radiotherapy and trauma or functionally as such seen in genetic diseases. Rapid weight gain and severe obesity are the most striking features of HyOb and caused by hyperphagia, reduced basal metabolic rate (BMR) and decreased physical activity. HyOb is usually unresponsive to diet and exercise. Although, GLP-1 and its anologs seem to be a new agent, there is still no curative treatment. Thus, prevention is of prime importance and the clinicians should be alert and vigilant in patients at risk for development of HyOb.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.