The kinetics of taxol-induced mitotic arrest and apoptosis in murine mammary carcinoma MCA-4 and ovarian carcinoma OCA-I tumors were determined to establish a possible causative relationship between mitotic arrest and apoptosis and to see whether these cellular effects of taxol would correlate with the extent of its antitumor efficacy. Mice bearing 8-mm tumors in a hind leg were given taxol i.v. at a dose of 10-80 mg/kg. Both tumors responded to taxol by significant growth delay or transient regression; in general, the response was greater as the dose of taxol was increased. For kinetics studies the mice were treated with 60 mg/kg taxol given once when tumors were 8 mm in size or twice, with the second dose being given 3 days after the first. At various times ranging from 1 to 96 h after treatment with taxol, tumors were histologically analyzed to quantify mitotic and apoptotic activity. After a single dose of taxol, mitotic arrest was visible at 1 h, and the mitotic index increased with time to reach peak values of 36% in MCA-4 tumors and 22% in OCA-I tumors at 9 h. The index then declined to a baseline of 1%-3% at 3 days for MCA-4 tumors and 1 day for OCA-I tumors. Apoptosis followed mitotic arrest, beginning at the time of peak mitotic arrest, increasing to the highest level of about 20% at 18-24 h after treatment and gradually declining to the normal level of 3%-6% after 3-4 days. Nuclear material progressively condensed in mitotically arrested cells, culminating in the frank appearance of multiple apoptotic bodies. The change in cell morphology plus the dynamics of apoptosis development imply that a large percentage of tumor cells arrested in mitosis by taxol die by apoptosis. Kinetic analysis undertaken after the second dose of taxol showed a considerably lower percentage of cells arrested in mitosis as compared with that seen after a single dose, and the induction of apoptosis by the second dose was minimal. However, the antitumor efficacy of the second dose of taxol was similar to or better than that of the first dose, implying that in addition to mitotic arrest and apoptosis, there exist other mechanisms by which taxol exerts its antitumor action.
Infertility caused by killing of the spermatogonial stem cells occurs frequently in men treated for cancer with radiotherapy and chemotherapy. We investigated whether pretreatment of rats with testosterone plus estradiol, which reversibly inhibits the completion of spermatogenesis and protects spermatogonial stem cells from procarbazine-induced damage, would also protect these cells from radiation. Adult male LBNF1 rats were implanted for 6 weeks with capsules containing testosterone and estradiol and then irradiated with doses from 2.5-7.0 Gy. Controls were irradiated with 1.8-3.5 Gy. Implants were removed 1 day after irradiation, and all animals were killed 10 weeks later for assessment of stem cell survival by counting repopulating tubules in histological sections and by sperm head counts. At doses of 2.5 and 3.5 Gy the repopulation indices and sperm head counts were significantly higher (P < 0.001) in the rats treated with testosterone and estradiol than in the controls. Protection factors (dose-modifying factors) calculated from the dose-response curves were in the range of 1.5-2.2. Elucidation of the mechanism of protection is essential to apply it to clinical situations. The fact that the spermatogonia are protected against radiation as well as procarbazine indicates that the mechanism does not involve drug delivery or metabolism.
The kinetics of taxol-induced mitotic arrest and apoptosis in murine mammary carcinoma MCA-4 and ovarian carcinoma OCA-I tumors were determined to establish a possible causative relationship between mitotic arrest and apoptosis and to see whether these cellular effects of taxol would correlate with the extent of its antitumor efficacy. Mice bearing 8-mm tumors in a hind leg were given taxol i.v. at a dose of 10-80 mg/kg. Both tumors responded to taxol by significant growth delay or transient regression; in general, the response was greater as the dose of taxol was increased. For kinetics studies the mice were treated with 60 mg/kg taxol given once when tumors were 8 mm in size or twice, with the second dose being given 3 days after the first. At various times ranging from 1 to 96 h after treatment with taxol, tumors were histologically analyzed to quantify mitotic and apoptotic activity. After a single dose of taxol, mitotic arrest was visible at 1 h, and the mitotic index increased with time to reach peak values of 36% in MCA-4 tumors and 22% in OCA-I tumors at 9 h. The index then declined to a baseline of 1%-3% at 3 days for MCA-4 tumors and 1 day for OCA-I tumors. Apoptosis followed mitotic arrest, beginning at the time of peak mitotic arrest, increasing to the highest level of about 20% at 18-24 h after treatment and gradually declining to the normal level of 3%-6% after 3-4 days. Nuclear material progressively condensed in mitotically arrested cells, culminating in the frank appearance of multiple apoptotic bodies. The change in cell morphology plus the dynamics of apoptosis development imply that a large percentage of tumor cells arrested in mitosis by taxol die by apoptosis. Kinetic analysis undertaken after the second dose of taxol showed a considerably lower percentage of cells arrested in mitosis as compared with that seen after a single dose, and the induction of apoptosis by the second dose was minimal. However, the antitumor efficacy of the second dose of taxol was similar to or better than that of the first dose, implying that in addition to mitotic arrest and apoptosis, there exist other mechanisms by which taxol exerts its antitumor action.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.