The plasma membrane of airway smooth muscle contains a high density of K+ channels of various types that mainly regulate membrane potential. To examine whether these K+ channels are involved in bronchodilating mechanisms in human airways, relaxation concentration-response studies to isoproterenol, theophylline, and a K(+)-channel opener, lemakalim (BRL 38227), were obtained in the presence or absence of charybdotoxin (ChTX) (10 or 100 nM), an inhibitor of large conductance Ca(2+)-activated K+ channels (KCa) in smooth muscle. The effects of other potassium channel blockers, apamin (0.1 microM, a small-conductance KCa blocker) and BRL 31660 (10 microM, an ATP-sensitive K(+)-channel blocker) on isoproterenol-induced bronchodilation were also examined. All relaxation studies were performed on spontaneous tone and in the presence of 1 microM indomethacin. ChTX produced a dose-dependent significant rightward shift in the isoproterenol relaxation response curves without changing maximum relaxation; geometric mean values of EC50 were 4.6 nM without and 19 nM with 10 nM ChTX (n = 7, p less than 0.005), and 3.4 nM without and 41 nM with 100 nM ChTX (n = 4, p less than 0.05), respectively. The theophylline relaxation responses were inhibited to a lesser extent by ChTX (10 nM) (ED50 of 32 microM without and 71 microM with ChTX, n = 7, p less than 0.05), whereas lemakalim-induced relaxation response was not affected. Other K(+)-channel blockers, apamin and BRL31660, failed to affect isoproterenol-induced bronchodilation. These results suggest that ChTX-sensitive K+ channels are involved in bronchodilation induced by beta-agonists and theophylline in human airways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.