The angle of attack (AOA) is one of the critical parameters in a fixed-wing aircraft because all aerodynamic forces are functions of the AOA. Most methods for estimation of the AOA do not provide information on the method’s performance in the presence of noise, faulty total velocity measurement, and faulty pitch rate measurement. This paper investigates data-driven modeling of the F-16 fighter jet and AOA prediction in flight conditions with faulty sensor measurements using recurrent neural networks (RNNs). The F-16 fighter jet is modeled in several architectures: simpleRNN (sRNN), long-short-term memory (LSTM), gated recurrent unit (GRU), and the combinations LSTM-GRU, sRNN-GRU, and sRNN-LSTM. The developed models are tested by their performance to predict the AOA of the F-16 fighter jet in flight conditions with faulty sensor measurements: faulty total velocity measurement, faulty pitch rate and total velocity measurement, and faulty AOA measurement. We show the model obtained using sRNN trained with the adaptive momentum estimation algorithm (Adam) produces more exact predictions during faulty total velocity measurement and faulty total velocity and pitch rate measurement but fails to perform well during faulty AOA measurement. The sRNN-GRU combinations with the GRU layer closer to the output layer performed better than all the other networks. When using this architecture, the correlation and mean squared error (MSE) between the true (real) value and the predicted value during faulty AOA measurement increased by 0.12 correlation value and the MSE decreased by 4.3 degrees if one uses only sRNN. In the sRNN-GRU combined architecture, moving the GRU closer to the output layer produced a model with better predicted values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.